
Snapcase – Regain Control over Your Predictions
with Low-Latency Machine Unlearning

Sebastian Schelter
BIFOLD & TU Berlin
schelter@tu-berlin.de

Stefan Grafberger
BIFOLD & TU Berlin

grafberger@tu-berlin.de

Maarten de Rijke
University of Amsterdam

m.derijke@uva.nl

ABSTRACT

The “right-to-be-forgotten” requires the removal of personal data
from trained machine learning (ML) models with machine unlearn-
ing. Conducting such unlearning with low latency is crucial for
responsible data management. Low-latency unlearning is challeng-
ing, but possible for certain classes of ML models when treating
them as “materialised views” over training data, with carefully
chosen operations and data structures for computing updates.

We present Snapcase, a recommender system that can unlearn
user interactions with sub-second latency on a large grocery shop-
ping dataset with 33 million purchases and 200 thousand users. Its
implementation is based on incremental view maintenance with
Differential Dataflow and a custom algorithm and data structure for
maintaining a top-𝑘 aggregation over the result of a sparse matrix-
matrix multiplication. We demonstrate how interactive low-latency
unlearning empowers users in critical scenarios to get rid of sensi-
tive items in their recommendations and to drastically reduce their
data’s negative influence on other users’ predictions.

PVLDB Reference Format:

Sebastian Schelter, Stefan Grafberger, and Maarten de Rijke. Snapcase –
Regain Control over Your Predictions with Low-Latency Machine
Unlearning. PVLDB, 17(12): 4273 - 4276, 2024.
doi:10.14778/3685800.3685853

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/deem-data/snapcase.

1 INTRODUCTION

Recent law such as the “right to be forgotten” in Europe requires
organisations to delete personal user data upon request: “The data
subject shall have the right to [. . .] the erasure of personal data [. . .]
where the data subject withdraws consent.” It is insufficient to only
delete personal data from primary data stores though. Personal
data must also be removed from machine learning models (which
may have learned representations of the personal data at training
time), giving rise to the problem of machine unlearning [9].
The need for low-latency machine unlearning. The data man-
agement community emphasized that it is important to provide
low-latency unlearning [11–13, 16] functionality to users. This does
not only allow users to control their personal data usage, but also

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685853

empowers them to adjust their personal predictions from ML appli-
cations in an interactive manner. Existing systems lack this func-
tionality, which can lead to devastating consequences [15].

As an example, imagine a person struggling with alcohol addic-
tion, who is making the decision to get sober and stop consuming
alcoholic products. Unfortunately, this person will still be contin-
ually exposed to ads and recommendations for alcohol products
when using online services, since the underlying ML models will
have learned their preference for alcohol from their past consump-
tion patterns. Empowering this person to immediately adjust their
recommendations and ads via low-latency unlearning might help
reduce their probability of relapsing to their addiction.

This example inspires our proposed demonstration, where we
show that low-latency unlearning is possible even in challenging
ML use cases with large datasets, and that it allows users to quickly
mitigate the impact of unwanted past consumption behavior. The
advantage of low-latency unlearning is that it does not require
changes to the underlying ML model and, at the same time, puts
users in control of their predictions and the (potentially negative)
impact of their data on themselves and other users. In our experi-
ence, the exact details of what users want to have unlearned and
removed from their predictions depend on personal ethics and the
context, and are thereby difficult to capture by hardcoded filters in
existing platforms.
Machine learning models as materialised views over training

data. On a technical level, our vision for low-latency unlearning
is to treat ML models as materialised views over their training
data [10]. Unlearning personal input data then corresponds to in-
crementally maintaining the materialised ML model in response to
deletions. Unfortunately, existing incremental view maintenance
(IVM) techniques are computationally prohibitive for many ML
models, where small changes in the input can result in large, ex-
pensive model updates due to global aggregations and non-linear
operations [9]. However, efficient machine unlearning is an active
area of research with recent successes for certain classes of models,
e.g., tree-based models [11, 16] and nearest neighbor models [12],
when carefully designed update operations and data structures are
used.
Snapcase. In this paper, we present the Snapcase system, a ref-
erence implementation of our vision of low-latency unlearning
for ML models via IVM (Section 3). Snapcase is a recommender
system for online grocery shopping, based on a state-of-the-art
algorithm for next-basket recommendation [4], which is in pro-
duction use for several online grocery shopping platforms from
our industry partner [14]. Snapcase holds the customers’ purchase
data in a relational database, maintains the recommendation model
as a materialised view over this data, and can update its recom-
mendation model with sub-second latency in response to deletions

https://doi.org/10.14778/3685800.3685853
https://github.com/deem-data/snapcase
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685853

in the database. Model maintenance is implemented as an incre-
mentalised dataflow program in Differential Dataflow [6], and our
system additionally integrates a custom data structure [12] for
maintaining an expensive top-𝑘 aggregation over the result of a
sparse matrix-matrix multiplication with millions of entries (which
is the computational bottleneck in unlearning for this model). We
provide the source code for Snapcase at https://github.com/deem-
data/snapcase.
Demonstration. We demonstrate Snapcase using a large grocery
shopping dataset with more than 33 million purchases and more
than 200 thousand users from the Instacart platform (a grocery
delivery service in the US). This dataset is representative for real-
world recommendationworkloads in online grocery shopping, since
its catalog size matches or exceeds the catalog sizes of large grocery
shopping chains in the US and Europe [1, 3, 8].
Scenarios. We offer three responsible data management scenarios
to attendees, centered around consumption behavior with respect
to alcohol addiction, obesity, and a high carbon footprint. In each
scenario, we assume that the user wants to make an ethically moti-
vated positive life decision and get rid of sensitive items (e.g., wine
and liquor in the alcohol addiction scenario) from their purchase
data and recommendations, and reduce their negative influence on
other users’ recommendations as well.
Interactive unlearning. Attendees choose a scenario and can then
inspect the sensitive items and categories in the user’s purchases,
model state, and personalised recommendations. Next, attendees
can interactively trigger low-latency machine unlearning for sen-
sitive item purchases of the scenario user. They will be able to
inspect the detailed changes to the model state and recommenda-
tions resulting from the IVM updates, and they will observe how
the user’s model state and recommendations gradually lose the con-
nection to sensitive items and categories. If the correct purchases
are unlearned, sensitive items will completely disappear from the
recommendations, and the user will also stop negatively influencing
the recommendations of other users.

2 BACKGROUND

We briefly introduce background knowledge required for the re-
mainder of the paper.
Next-basket recommendation. The ML use case in our demon-
stration is next-basket recommendation (NBR). The input data
for NBR is historical purchase information {b𝑢1 , b𝑢2 , . . . , b𝑢𝑛 } of a
user 𝑢, where the binary vector b𝑢 𝑗

∈ {0, 1} |𝐼 | in the item space 𝐼
denotes the set of items bought together in the 𝑗-th shopping basket.
The goal of NBR models is to predict a user’s next set of items b𝑢𝑛+1
(i.e., the next shopping basket). Nearest-neighbor methods that take
the repeat behavior of grocery shopping into account dominate this
field [5] and outperform neural approaches [2].

We use the TIFU [4] algorithm, which models the temporal dy-
namics of the frequency information in the users’ past baskets and
conducts a hierarchical aggregation to create a sparse embedding
𝜙u per user𝑢. Next, it computes the top-𝑘 neighborhood graph over
the embeddings of all users and uses this graph to create recommen-
dations for a user𝑢 as a linear combination 𝛼 𝜙𝑢 + (1−𝛼)

∑︁
𝑗∈𝑁𝑢

𝜙 𝑗

 Aisles

 Items

 Purchases

Map

Map

Map

Distinct

Distinct

Distinct

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Map

Map

Map

Join

Join

Join
Map

Map

Map

Reduce

Reduce

ReduceRelational Purchase 
Database

Incremental View Maintenance via  
Differential Dataflow and Caboose

Materialised Recom-
mendation Model

Top-k Neighborhood  
GraphTop-k

Caboose

Sparse User  
Embeddings

ch
an

ge

pr
op

ag
at

io
n

change

propagation ch

an
ge

pr

op
ag

at
io

n

 Baskets

Figure 1: Overview of the Snapcase system – a recommen-

dation model is maintained as a materialised view over a

relational database via Differental Dataflow and Caboose.

of the users’ embedding and the embeddings of the 𝑘 nearest neigh-
bors 𝑁𝑢 of 𝑢 in embedding space.
Efficient unlearning for nearest neighbor-based recommen-

dation. The computational challenge in unlearning for the TIFU
model is the maintenance of the top-𝑘 neighborhood graph under
deletions. In earlier work, we implemented this computation with
locality-sensitive hashing [9], but ran into severe scalability issues
for larger datasets. Therefore, we recently developed a custom al-
gorithm and data structure called Caboose [12], which efficiently
maintains an expensive top-𝑘 aggregation over the result of a sparse
matrix-matrix multiplication. Caboose can update this aggregation
result in less than a second even for input matrices with a million
rows [12] .
Differential Dataflow. Differential Dataflow [6, 7] executes data-
parallel dataflow computations over partitioned data, with support
for user-defined functions applied in standard operators such as
map, join, filter, and group-by. It provides automatic incrementalisa-
tion of programs built from these operators, by internally treating
data collections as a monotonically growing set of update records
and using corresponding delta-based operator implementations,
which only performwork as input collections change and efficiently
compute the resulting changes to their output collections.

3 SYSTEM OVERVIEW

Overview. Snapcase is a Rust-based reference implementation for
maintaining an MLmodel as a materialised view over a database, fo-
cusing on the challenging use case of next-basket recommendation.
Its architecture is shown in Figure 1: the purchase data of users is
held in various tables of a traditional relational database. The recom-
mendation model (Section 2) is implemented as a combination of an
incrementalised dataflow program in Differential Dataflow and our
Caboose data structure. Model maintenance requires maintaining
the sparse embeddings as well as the top-𝑘 neighborhood graph
between user embeddings.
Machine unlearning as incremental view maintenance. Snap-
case assumes that the relational database is under the control of
an external e-commerce application. Deletions in the database are
propagated to our system via change data capture and trigger the
immediate update of the recommendation model via low-latency
unlearning with IVM. The sparse user embeddings require a hier-
archical aggregation over the shopping baskets with time-decayed
weights [4], which we model with a sequence of map and reduce op-
erations in our dataflow program.Maintenance of these embeddings

https://github.com/deem-data/snapcase
https://github.com/deem-data/snapcase

Product purchases
of scenario user
(stored in relational
database)

Option to unlearn
sensitive product
purchases from
ML model

Ranked list of
personalised next-
basket recomm-
endations for the
scenario user

Visualisation of the
scenario user’s influence
on other users in the
recommendation model

Most common product
categories in the influence
network of the scenario user

Scenario options
for unlearning
sensitive items

2

1

5

3

3

4

demonstrator

No more recommendations for sensitive items after

two rounds of unlearning via incremental view maintenance:

low-latency
unlearning

Scenario user initially exposed to recommendations for  
sensitive items (highlighted in red)

Figure 2: Demonstration interface for the addiction scenario, where the scenario user bought alcoholic items, is subsequently

exposed to further alcoholic items in their recommendations, and is closely connected to other users in the dataset, who also

consume alcoholic items. Attendees trigger low-latency unlearning of alcohol purchases for the scenario user and will observe

how this gradually changes their recommendations and corresponding model state to get rid of the sensitive alcohol items.

is fast, as updates can be isolated per user. The final embeddings
are held in an in-memory hashmap, which mirrors the changes in
the indexed state from Differential Dataflow [7]. The top-𝑘 neigh-
borhood graph is more difficult to maintain, since the deletion of a
single interaction with a single item from a user history potentially
impacts the top-𝑘 neighbors of all users who share one item with
the user to unlearn for. The set of potentially impacted users can of-
ten be as large as half of the existing user base due to popular items
in the heavy-tailed interaction distribution common for recommen-
dation data. Therefore, we use Differential Dataflow to compute
the changes to the embeddings and delegate the maintenance of
the top-𝑘 neighbors graph to Caboose. The actual recommenda-
tions are not materialised, but computed online. This is reasonable
from a latency perspective since the recommendations only require
a linear combination of already materialised embedding vectors,
followed by a sorting operation for the most highly weighted items.

4 DEMONSTRATION DETAILS

For our demonstration, we run Snapcase in a Rust-basedweb socket
server, which asynchronously communicates with a Javascript-
based web interface for the attendees. We use a large dataset of
grocery shopping purchase data1 from the Instacart delivery ser-
vice in the US. The dataset contains 33,819,106 purchases from
206,209 users in 3,421,083 shopping baskets, for a product catalog
of 49,685 distinct items. The top-𝑘 neighborhood graph maintained
in Snapcase for this dataset contains around 10 million edges. This
dataset is representative of real-world workloads, since the catalog
size matches or exceeds publicly reported catalog sizes from large
grocery shopping chains in the US and Europe [1, 3, 8].

1https://www.kaggle.com/c/instacart-market-basket-analysis

Scenarios. We center our demonstration around three responsible
data management scenarios. In each scenario, we assume that a user
decides to make an ethically motivated positive change in their life,
with regard to their consumption behavior. In particular, we focus
on persons struggling with addiction, who want to stop consuming
alcohol, persons with obesity problems, who want to stop consum-
ing unhealthy food, and persons who want to stop consuming meat
products for ecological reasons to reduce their carbon footprint. We
refer to the items that a person wants to stop consuming as sensitive
items and assume that these items are part of their purchase history
on online platforms due to past consumption. As a result, the person
will still be exposed to such sensitive items by the recommender
system on online grocery shopping platforms (which learned their
past behavior). Furthermore, their purchase history also contributes
to other users being given recommendations for the undesirable
sensitive items.

Our demonstration is meant to showcase that low-latency un-
learning functionality empowers users of online platforms to instan-
taneously curate their recommendations to remove sensitive items
and, at the same time, drastically reduce their negative influence on
other users’ recommendations. We use an off-the-shelf NBR model
from existing research [4], which has no notion of sensitive items.
Demonstration. We detail our proposed demonstration and the
provided interface for attendees (see Figure 2 for an example of a
user deciding to stop consuming alcoholic products). At the begin-
ning of the demonstration, attendees pick the scenario (addiction,
obesity, carbon footprint) of their choice 1 . For each chosen sce-
nario, we visualise the data of a sample user from the Instacart

https://www.kaggle.com/c/instacart-market-basket-analysis

(a) Model update times and changes. (b) Recommendation changes. (c) Changes in influence of other users.

Figure 3: Attendees are presented with details on the changes and update times incurred by unlearning for the materialised

recommendation model, the item recommendations and the influence of the scenario user on other users.

dataset, who bought items from the corresponding sensitive prod-
uct categories and receives recommendations for sensitive items
from the recommendation model.
Inspecting the purchase history, model state and recommendations for
the scenario. After choosing the scenario, attendees can inspect the
database and model state for the scenario user in detail. They can
inspect the shopping basket history of the user 2 , as stored in the
relational database, with items from sensitive categories highlighted
in red. Furthermore, they can inspect the current state of the mate-
rialised recommendation model for the scenario user 3 , including
the user’s sparse embedding representation, the ego network (all
one-hop connections) of the user in the top-𝑘 neighborhood graph
(where we also highlight connected users in red, who bought items
from sensitive categories) and a list of the top-10 product categories
present in the purchase histories of the connected users. 4 On
the right side, attendees are presented with a list of the top-20 next
basket recommendations for the scenario user, where we again
highlight sensitive items in red. Figure 2 shows this for the alco-
hol scenario: repeated purchases of different wines lead to an ego
network for the scenario user which is dominated by other users
who consumed alcohol. As a consequence, the recommendations
for this scenario user are also dominated by alcoholic items.
Unlearning purchases to rid the user of recommendations for sensitive
items. In the main part of the demonstration, attendees can interac-
tively trigger the low-latency unlearning of item interactions for
the scenario user 5 . This results in the deletion of the sensitive
items from all the user’s shopping baskets in the relational database,
which subsequently propagates the changes to Differential Dataflow
to incrementally maintain the recommendation model. Attendees
are presented with a detailed dialogue, which shows the individual
changes and IVM update times for the database, the recommenda-
tion model (Figure 3a) and the recommendations (Figure 3b). They
can observe the impact of the deletion on both the scenario user
and users influenced by them (Figure 3c). The statistics shown also
highlight the computational difficulty of unlearning, as the top-𝑘
connections of several thousands of users have to be inspected for
unlearning a single item interaction. Most importantly, attendees
can observe how unlearning sensitive items gradually changes the
model state for the scenario user by reducing the amount of sen-
sitive items in their recommendations, and by removing sensitive

categories from the user’s influence network. Attendees will expe-
rience that repeated rounds of unlearning often completely remove
the exposure to sensitive items, by moving the scenario user to a
different point in the model space. We see this in Figure 2 (right
side), where the ego network in the neighborhood graph contains
almost no more (red) users with sensitive items after unlearning.

We would additionally like to note that our ego network visu-
alisation also allows attendees to navigate to other users than the
preselected scenario users. Furthermore, we provide our demon-
stration and system code under an open license, which allows other
researchers to extend Snapcase to new algorithms and datasets.

REFERENCES

[1] Albert Heijn. 2023. Van Land tot Klant: Onze Ketens. Retrieved July 5, 2024
from https://www.ah.nl/over-ah/duurzaamheid/onze-ketens

[2] Maurizio Ferrari et al. 2019. Are We Really Making Much Progress? A Worrying
Analysis of Recent Neural Recommendation Approaches. RecSys (2019).

[3] Fortune. 2010. Inside the Secret World of Trader Joe’s. Retrieved July 5, 2024
from https://fortune.com/2010/08/23/inside-the-secret-world-of-trader-joes/

[4] Haoji Hu et al. 2020. Modeling Personalized Item Frequency Information for
Next-Basket Recommendation. SIGIR (2020).

[5] Ming Li et al. 2023. A Next Basket Recommendation Reality Check. ACM TOIS
41, 4 (2023), 1–29.

[6] Frank McSherry et al. 2013. Differential Dataflow. CIDR (2013).
[7] Frank McSherry et al. 2020. Shared Arrangements: Practical Inter-query Sharing

for Streaming Dataflows. PVLDB 13, 10 (2020).
[8] REWE. 2024. Über das Unternehmen - Struktur und Vertriebslinien. Retrieved

July 5, 2024 from https://www.rewe-group.com/de/unternehmen/struktur-und-
vertriebslinien/rewe/

[9] Sebastian Schelter. 2020. Amnesia - A Selection of Machine Learning Models
That Can Forget User Data Very Fast. CIDR (2020).

[10] Sebastian Schelter. 2021. Towards Efficient Machine Unlearning via Incremental
View Maintenance. Workshop on Challenges in Deploying and Monitoring ML
Systems@ICML (2021).

[11] Sebastian Schelter et al. 2021. Hedgecut: Maintaining Randomised Trees for
Low-latency Machine Unlearning. SIGMOD (2021).

[12] Sebastian Schelter et al. 2023. Forget Me Now: Fast and Exact Unlearning in
Neighborhood-based Recommendation. SIGIR (2023).

[13] Julia Stoyanovich et al. 2022. Responsible Data Management. Commun. ACM 65,
6 (2022), 64–74.

[14] Maria Vechtomova et al. 2023. Databricks AI Summit: Streamlining API Deploy
ML Models Across Multiple Brands: Ahold Delhaize’s Experience on Serverless.
Retrieved July 5, 2024 from https://www.youtube.com/watch?v=GSJFyoBiCXk

[15] Vincent Warmerdam. 2021. Beyond Broken. Retrieved July 5, 2024 from
https://koaning.io/posts/beyond-broken/

[16] Zhaomin Wu et al. 2023. Deltaboost: Gradient Boosting Decision Trees with
Efficient Machine Unlearning. SIGMOD (2023).

https://www.ah.nl/over-ah/duurzaamheid/onze-ketens
https://fortune.com/2010/08/23/inside-the-secret-world-of-trader-joes/
https://www.rewe-group.com/de/unternehmen/struktur-und-vertriebslinien/rewe/
https://www.rewe-group.com/de/unternehmen/struktur-und-vertriebslinien/rewe/
https://www.youtube.com/watch?v=GSJFyoBiCXk
https://koaning.io/posts/beyond-broken/

	Abstract
	1 Introduction
	2 Background
	3 System Overview
	4 Demonstration Details
	References

