Software systems that learn from data with machine learning (ML) are ubiquitous. ML pipelines in these applications often suffer from a variety of data-related issues, such as data leakage, label errors or fairness violations, which require reasoning about complex dependencies between their inputs and outputs. These issues are usually only detected in hindsight after deployment, after they caused harm in production. We demonstrate ArgusEyes, a system which enables data scientists to proactively screen their ML pipelines for data-related issues as part of continuous integration. ArgusEyes instruments, executes and screens ML pipelines for declaratively specified pipeline issues, and analyzes data artifacts and their provenance to catch potential problems early before deployment to production. We demonstrate our system for three scenarios: detecting mislabeled images in a computer vision pipeline, spotting data leakage in a price prediction pipeline, and addressing fairness violations in a credit scoring pipeline.