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ABSTRACT
Software systems that learn from user data with machine learn-
ing (ML) have become ubiquitous over the last years. Recent law
such as the “General Data Protection Regulation” (GDPR) requires
organisations that process personal data to delete user data upon
request (enacting the “right to be forgotten”). However, this regula-
tion does not only require the deletion of user data from databases,
but also applies to ML models that have been learned from the
stored data. We therefore argue that ML applications should offer
users to unlearn their data from trained models in a timely man-
ner. We explore how fast this unlearning can be done under the
constraints imposed by real world deployments, and introduce the
problem of low-latency machine unlearning: maintaining a deployed
ML model in-place under the removal of a small fraction of training
samples without retraining.

We propose HedgeCut, a classification model based on an en-
semble of randomised decision trees, which is designed to answer
unlearning requests with low latency. We detail how to efficiently
implement HedgeCut with vectorised operators for decision tree
learning. We conduct an experimental evaluation on five privacy-
sensitive datasets, where we find that HedgeCut can unlearn train-
ing samples with a latency of around 100 microseconds and an-
swers up to 36,000 prediction requests per second, while providing
a training time and predictive accuracy similar to widely used im-
plementations of tree-based ML models such as Random Forests.
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1 INTRODUCTION
Software systems that learn from user data with machine learning
(ML) have become ubiquitous over the last years [33], and partici-
pate in many critical decision-making processes, e.g., about loans,
job applications and medical treatments [36]. Recent laws such
as the “right to be forgotten” [14] (Article 17 of the General Data
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Figure 1: Current ML setups update ML models with re-
spect to GDPR deletion requests only when the model is re-
trained and redeployed via heavy-weight pipelines. We pro-
pose HedgeCut, a custom ML model which enables online
deletion requests in-place that remove sensitive user data
from the deployed model with millisecond latencies.

Protection Regulation (GDPR)) require companies and institutions
that process personal data to delete user data upon request: “The
data subject shall have the right to [...] the erasure of personal data
concerning him or her without undue delay [...] where the data
subject withdraws consent”.
Enacting the right to be forgotten. Making data processing sys-
tems GDPR-compliant has been identified as one of the key research
challenges for the data management community [35], was a central
topic in a recent panel discussion at SIGMOD [3], and is for example
addressed by enhancing fundamental data structures with efficient
delete operations [31]. Recent research [8, 18, 32, 39] argues that it is
not sufficient to merely delete personal user data from primary data
stores such as databases, and that machine learning models that
have been trained on the stored data also fall under the regulation.
This view is supported by Recital 75 of the GDPR [16]: “The risk
to the rights and freedoms of natural persons [...] may result from
personal data processing [...] where personal aspects are evaluated,
in particular analysing or predicting aspects concerning perfor-
mance at work, economic situation, health, personal preferences or
interests, reliability or behaviour, location or movements”.
A data management perspective on machine unlearning. Re-
lational databases offer transactional deletes and corresponding
updates for materialized views [19] over the data, however there
exists no such automated deletion mechanism for ML models de-
rived from the data. The machine learning community has been
working on this issue in recent years under the umbrella of ma-
chine unlearning [8, 9, 18, 21, 26]. Given a model, its training data
and a set of user data to unlearn, they propose efficient ways to
accelerate the retraining of the model. However, these approaches
lack a data management perspective, as they ignore the constraints
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imposed by the complexity of deployment pipelines in real-world
ML applications [27, 33, 34] as sketched in Figure 1. ML models
are deployed in serving systems that can efficiently answer online
prediction requests with low latency, but in order to update a model,
heavy-weight pipelines that have to spin up infrastructure, retrain
the model and run expensive evaluation workloads have to be ex-
ecuted [1, 5, 27]. Data removal in response to GDPR requests is
typically integrated into these pipelines, and will only affect the
model once it is being redeployed via the heavyweight pipeline.

As a concrete example, let us look at the high costs of retraining
and redeploying models, when using Spark MLlib [25] in a real-
world deployment: (1) Before we can even start training, we need to
provision machines in the cloud; (2) Next, we need to startup Spark
on the cluster, and read the training data for the model from its
original location (typically a secured distributed filesystem) into the
aggregate main memory of the cluster; (3) Now, we can execute the
retraining of the model from scratch based on the updated training
data; (4) Afterwards, a set of additional sanity tests is typically
run, e.g., inspecting predictions that changed, or comparing the
performance of the new model to the performance of the current
model in backtesting scenarios [33]; (5) Finally, we initiate the
redeployment into the serving system, often with ‘canary’ and
‘rollback’ steps [27] to be able to react to flawed model versions;
in many cases, this redeployment might require us to spin up new
serving machines so that traffic can be rerouted atomically.

Going through this whole process only to unlearn a single train-
ing example does not make sense economically and operationally.
However, ideally, we would still like to be able to instantly unlearn
single examples between regular redeployments. For that, we have
to be able to completely bypass the heavy-weight redeployment
steps. We can retrieve the data of the user to delete with a point
query, and we would like to be able to issue a deletion request
with this data to the serving system, to simply update the deployed
model in place (instead of having to train and deploy a new model).
Low-latency machine unlearning. In this paper, we propose
such a technique to perform low-latency machine unlearning: we
instantly respond to a GDPR deletion request (refered to as “un-
learning request”) by updating the deployed ML model in-place to
remove the effect of the data of the user, without having to retrain
the model, as illustrated in the right part of Figure 1. We ensure that
the model after the update corresponds to a model that the training
algorithm would have produced if it had been trained from scratch
without the data of the user to unlearn.

The GDPR law does not specify how soon data must be erased af-
ter a deletion request [35], it states the “obligation to erase personal
data without undue delay” [14] using “appropriate and effective
measures” [15]. Currently, data erasure seems to be a rather tedious
and lengthy process in practice; data erasure from active systems
in the Google cloud, for example, can take up to two months.1 We
argue that it is an open and important academic question to deter-
mine how fast data can be erased from deployed ML models, and
that we should design systems that empower users to exercise their
right to be forgotten as timely as possible, instead of making them
wait for several months.

1https://cloud.google.com/security/deletion

Modelmaintenance under unlearning. We focus on supervised
classification tasks, and propose a new ML model called HedgeCut,
which can efficiently unlearn a small fraction of its training data
after deployment (Section 4). HedgeCut is able to respond to online
unlearning requests with a latency of less than amillisecond, similar
to the latency with which traditional models respond to online
prediction requests. HedgeCut is a variation of the well-established
“Extremely Randomised Trees” (ERT) approach [17], which learns
an ensemble of randomized decision trees where attributes and
cut-off points to split the data are chosen at random.

We efficiently maintain this tree ensemble under data removal as
follows. We introduce a novel notion of split robustness to identify
splitting decisions in the tree ensemble which potentially change in
response to removed data (Section 4.2). We make HedgeCut learn
and maintain so-called subtree variants for these cases, e.g., we
learn additional subtrees of the randomised tree ensemble which
the model uses in cases when the data removal changes the split
decision. We argue that such deletion only needs to be possible for
a small fraction of the training data, as only a small fraction of the
users typically issue GDPR deletion requests (Section 2). We talked
to industry practitioners from cloud and e-commerce vendors, who
estimate that typically only one in ten-thousand users will issue
a deletion request. We design our methods to be able to handle
an order of magnitude more deletion requests (one in a thousand
users) to be on the safe side.

We discuss an efficient, multi-threaded implementation of Hedge-
Cut in Rust, and describe how to apply vectorisation [4, 22, 41] to
accelerate scan-intensive parts of the learning procedure (Section 5).
We conduct an extensive experimental evaluation of HedgeCut in
Section 6, where we analyse its ability to unlearn user data with
low latency (Section 6.2.1), while still providing a high throughput
for prediction requests (Section 6.2.2). Furthermore, we compare
its training time and predictive performance to popular, optimised
Cython implementations of other tree-based methods like Random
Forests in Section 6.3.1. We make our implementation available2
under an open source license.

In summary, this paper makes the following contributions.

• We introduce the problem of low-latency machine unlearning:
maintaining a deployed ML model in-place under the removal of
a small fraction of samples without retraining (Section 2).
• We propose Hedgecut, a classification model based on an en-
semble of randomised decision trees, which incorporates a novel
notion of split robustness and efficiently answers unlearning
requests for a small fraction of training samples (Section 4).
• We detail how to efficiently implement HedgeCut by designing
vectorised operators for decision tree learning (Section 5).
• We conduct an experimental evaluation on five privacy-sensitive
datasets, where we find that HedgeCut can unlearn training sam-
ples with a latency of around 100 microseconds and answer up to
36,000 prediction requests per second, while providing a training
time and predictive accuracy similar to widely used implementa-
tions of tree-basedMLmodels such as Random Forests (Section 6).

2https://github.com/schelterlabs/hedgecut
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2 PROBLEM STATEMENT
In the following, we formalise the problem in the focus of this paper:
unlearning a small fraction of training samples from a trained and
deployed ML model without reaccessing its training data. We build
upon the initial problem introduced in our previous work [32].

Let tlearn (D,θ ) denote a procedure to learn an ML model f (such
as a classifier) from training data D with hyperparameters θ . Let
D = {d1, d2, . . . , dM } denote the data ofM users (our training data),
and let f = tlearn (D,θ ) denote the ML model learned from the user
dataD. Now, assume that we are required to delete the data dunlearn
of a particular user from the model. That means we are interested
in obtaining another ML model f ′ = tlearn (D \ dunlearn,θ ), which
never saw the data dunlearn of the user to unlearn during its training.
This new model can be trivially obtained by repeating the training
procedure tlearn on D \ dunlearn.
Unlearning without retraining. Conducting a complete model
retraining is inefficient and costly in real world deployments, where
retraining and redeployment require the execution of complex
heavy-weight data pipelines. We can furthermore assume that the
loss of data from a single user (or a very small number of users)
does not require a different choice of hyperparameters (we validate
this claim experimentally in Section 6.3.1). Instead, we would be
interested in an efficient procedure tunlearn that can inspect dunlearn
and update the existing model f to the desired model f ′, such that
f ′ = tunlearn ( f , {dunlearn},θ ) = tlearn (D \ {dunlearn},θ ).

This approach is refered to as “decremental learning” or “machine
unlearning” in the ML literature [9]. Unlearning only needs to take
place for the small fraction of users that might want to have their
data removed. We talked to industry practitioners from cloud and
e-commerce vendors, who estimate that typically only one in ten-
thousand users issues a deletion request. Formally, the unlearning
procedure tunlearn must satisfy the following property for a small
fraction ϵ of unlearnable training samples: ∀Dr ⊂ D, |Dr | ≤ ϵ |D| :
tunlearn ( f ,Dr ,θ ) = tlearn (D \ Dr ,θ ).

The unlearning procedure tunlearn should also exhibit a runtime
that is much lower than the runtime of tlearn for retraining, ideally
similar to the time to compute a prediction for an unseen sample
from the model. Note that we also require that tunlearn does not
reaccess the training data, indicated by the fact that the function
signature of tunlearn does not require access to D.

3 BACKGROUND
We briefly introduce the background for “Extremely Randomised
Trees” and split selection in decision trees based on Gini gain, on
which our approach builds later on.
Extremely Randomised Trees (ERTs). Tree-based methods are
a well-studied, non-linear supervised learning approach, which
has been shown to perform well on many problems. Tree-based
methods recursively partition the feature space, so that the resulting
hyperboxes contain a set of data points that give a strong indication
about the target variable.

We focus on an approach to tree learning called Extremely Ran-
domised Trees (ERT) [17]. This approach builds an ensemble of
decision trees where both the attributes as well as the cut-off points
to split the data in a node are chosen at random independent of
target attribute, and the decision which split to use is made based

on some criterion measuring the “purity” of the resulting splits
like information gain or Gini impurity. Even though this approach
is conceptually simple, its predictive performance is highly com-
petitive with more popular ML models like Random Forests, and
established ML libraries such as scikit-klearn include implementa-
tions of this approach.

Algorithm 1 illustrates the splitting procedure for numerical
attributes in ERTs performed by the function split_a_node. We
select k non-constant attributes as split candidates for a local subset
of the training samples, and select the cut point for these attributes
at random from the range of the data in the function random_split.
The best split is selected via the score function which measures
the purity of the split afterwards, and we stop splitting the data
once the subset to split only contains nmin samples or is constant
in the attribute values or labels (as shown in stop_split).

Algorithm 1 Splitting procedure in Extremely Randomised Trees.
1: function split_a_node(D)

Input: local subset of training samples D
Output: a split [a, ac ] or a leaf

2: if stop_split(D)
3: return a leaf labeled according to class frequencies in D
4: else
5: Randomly select k non-constant attributes {a1, . . . , ak } in D
6: Generate k splits {s1, . . . , sk }, where si ← random_split(ai )
7: return best split s∗ ← argmaxi=1. .k score(si , D)

8: function stop_split(D)
9: if |S | ≤ nmin or all attribute values constant in D or label constant in D
10: return true
11: return false

12: function random_split(a, D)
13: aDmin, a

D
max ← minimal and maximal value of a in D

14: ac ← random cut point from the range [aDmin, a
D
max]

15: return [a < ac ]

Split selection via Gini gain. As mentioned in the previous para-
graph, decision tree learning is based on a measure of the “purity”
gain of splitting a subset of the training data based on a chosen
attribute. Common choices for measuring this purity include nor-
malized information gain [38] or Gini impurity. While empirical
studies find that both measures produce equally good models [30]
in terms of their predictive performance, the reduction in Gini
impurity is often the preferred measure in practice as it does not
require the costly computation of logarithms.

The gain in Gini impurity for the general case of splitting a
dataset into a left and right partition for a classification task with
K different classes is measured as follows:

K∑
c=1

p (c )p (¬c ) −

wl

K∑
c=1

pl (c )pl (¬c ) +wr

K∑
c=1

pr (c )pr (¬c )


where
∑K
c=1 p (c )p (¬c ) denotes the impurity before conducting a

split, with p (c ) being the probability of picking an element of class c
at random from the data, and p (¬c ) the probability of picking an
element from a different class. When evaluating a split, we parti-
tion the data into a left and right part according to the split, and
compute the weighted impuritywl

∑K
c=1 pl (c )pl (¬c ) of the left par-

tition, as well as the weighted impuritywr
∑K
c=1 pr (c )pr (¬c ) of the

right partition. Here, pl (c ) and pr (c ) denote the probabilities of
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Figure 2: Hedgecut learns an ensemble of randomised decision trees with randomly chosen splits on randomly chosen at-
tributes, and maintains this ensemble under the removal (“unlearning”) of a certain amount of training samples. Some trees
contain non-robust splits 1 where the split decision (based on Gini gain) might change after the removal of data 2 . Hedge-
cut updates leaf label statistics 3 , and maintains subtree variants for cases where split decisions change. It activates subtree
variants after data removal if the model would have chosen a different split in light of the removed data 4 .

encountering an element of class c in the left or right partition.
Subtracting the sum of the partition impurities from the original
impurity gives the reduction which we aim to maximise.

4 APPROACH
We give an overview over the main idea behind HedgeCut in Sec-
tion 4.1, before we describe in detail how we determine the ro-
bustness of split decisions in HedgeCut (Section 4.2), how we train
HedgeCut ensembles (Section 4.3), and how we conduct prediction
and unlearning (Sections 4.4 & 4.5).

4.1 Overview
The goal of this paper is to design a classification model that can
efficiently unlearn a small fraction of its training data without
retraining. We focus on tree-based ML methods, which are trained
by recursively partitioning the training data, locally optimising
a criterion such as Gini gain (Section 3). Variants of tree-based
methods such as “Extremely Randomised Trees” (ERTs) exhibit
a high amount of independence in the computations which they
apply (due to the randomised choice of attributes and cut points
for splitting), which makes this approach a prime candidate for
enhancement with unlearning functionality.

We design our proposed model HedgeCut based on ERTs. The
left side of Figure 2 illustrates how a HedgeCut tree ensemble looks
like after training (before unlearning), and the right side gives an
example of how this ensemble is maintained during unlearning.
The ensemble on the left consists of decision trees which apply
randomly chosen splits to the data based on which the path through
the tree for a given example is chosen. Ultimately, the leafs of a tree
dictate the predicted label (positive or negative class). HedgeCut
differentiates between robust splits (which cannot change under
the removal of small number of records) and non-robust splits 1 ,
which might change later on. For these splits, HedgeCut maintains
so-called subtree variants that are inactive initially. In case of the
unlearning of a training sample 2 , HedgeCut updates the tree en-
semble to account for the removed data. Robust split decisions need

not be revised and HedgeCut only updates the leaf statistics to
account for the removed sample 3 . For non-robust splits, Hedge-
Cut recomputes the Gini gain of maintained subtree variants and
potentially activates a previously inactive subtree variant 4 , which
might become the preferred split after the removal of a training
sample.

4.2 Quantifying the Robustness of
Split Decisions against Data Removal

At the core of the learning procedure of decision trees is the se-
lection of splits to partition the data. HedgeCut (and ERTs) select
a set of attributes and cut points at random, and then choose the
split candidate with the highest Gini gain to further evolve the
tree (line 7 in Algorithm 1).
Robustness of split decisions. In our scenario, we want the
model to also handle the deletion of records after training, so a
natural question to ask is how robust the split decisions are in the
light of data removal. There can be cases where one split candidate
exhibits a higher Gini gain at training time than another candidate,
but where the decision would be reversed if we removed one more
record from the data to split later on. In order to handle such cases,
we need to quantify the robustness of a split decision in terms of
the number of records that can be removed from the data without
affecting the split decision. This target robustness r is inherently
linked to the maximum number of removable records that we want
our model to be able to handle. This number r = ϵ |D| is specified
by the user as a fraction ϵ of the overall size of the training data |D|
that we want to be able to remove. If we train on 10,000 examples
and we want the model to be robust against the removal of 0.1% of
the data, then r = 10 and we are interested in determining which
split decisions in our trees could change if we removed at most 10
records.
Quantification of the robustness of a split decision. In the
following, we describe how we quantify the robustness of split
decisions. Assume that we have selected a set of split candidates
for the data D, and now want to determine whether the best split



s∗ (with the highest Gini gain) is robust against the removal of r
records with respect to another split candidate t .

The following property must hold for s∗ to be robust with respect
to t : There can be no subset Pr of the partition of training samples
P to split with r or less records, which we could remove from
P to have t obtain a higher Gini gain G (t , P \ Pr ) than the gain
G (s∗, P\Pr ) of s∗: ∄ Pr ⊂ P : |Pr | ≤ r ∧G (s∗, P\Pr ) < G (t , P\Pr ).

We present a greedy approach to test for this robustness property
in Algorithm 2. The function weaken_split computes how much
the removal of a single record can reduce the difference between
the scores of the splits s∗ and t . For both splits, we have statistics
denoting how many positive and negative records they assign to
their left and right partitions (fromwhichwe compute the Gini gain).
The function enumerates all eight possible record removal settings
(Does the record have a positive or negative label? Is it assigned
to the left or the right partition of the best split? Is it assigned
to the left or right partition of the split candidate?) in lines 11-
13, computes the updated split statistics ŝ and t̂ to simulate the
removal and inspects the resulting reduction of the score difference
δ = G (ŝ ) −G (t̂ ) in line 17. It determines the updated split statistics
ŝ and t̂ for the setting which most impacted the score difference, as
well as the corresponding difference δ∗ (line 18). Note that some
removal settings might not be applicable, e.g., when split partitions
do not contain positive or negative records anymore. There can
also be rare cases where several record removals result in an equal
score difference δ∗. Furthermore, our greedy algorithm will not
determine the correct answer if any of the counts in the split is
smaller than the deletion budget r . As a consequence, we reject
split candidates and repeat the candidate generation, when this is
the case (see Section 4.3 for details).

Algorithm 2 Quantification of split robustness.
1: function is_robust(s∗, t, r )

Input: Best split statistics s∗ , candidate split statistic t , target robustness r
Output: Whether split is robust and how many removals were tested

2: ŝ∗ ← s∗
3: t̂ ← t
4: for i in 0 . . . r
5: (δ, ŝ∗, t̂ ) ← weaken_split(ŝ∗, t̂ )
6: if δ < 0
7: Split non-robust, decision can be reversed by removing i records
8: Split robust, decision cannot be reversed by removal of r records

9: function weaken_split(s, t )
Input: split statistic s , split statistic t
Output: Minimal score difference δ ∗ after removal of a single record and corre-

sponding split statistics ŝ, t̂
10: ∆← ∅
11: for label l in {+, −}
12: for split decision ds with respect to s in { left, right}
13: for split decision dt with respect to t in { left, right}
14: if s and t can be updated with (l, ds , dt )
15: ŝ ← Update s for removal of a record with configuration (l, ds , dt )
16: t̂ ← Update t for removal of a record with configuration (l, ds , dt )
17: Add (ŝ, t̂ ) to ∆
18: Find δ ∗ = min

(ŝ, t̂ )∈∆
G (ŝ ) −G (t̂ ) minimizing the score gap between s and t

19: returnMinimal score difference and its corresponding statistics (δ ∗, ŝ, t̂ )

The function is_robust repeatedly invokes weaken_split (at
most r times) and updates the split statistics s and t with the most
impactful removal, until one of two conditions occurs: (i ) if the score
difference δ is negative, then the split decision has been reversed by

the record removals conducted; (ii ) if we did not encounter a nega-
tive score difference δ after r record removal trials, we determine
that the split is robust against the removal of r records.

Even though the Gini impurity function itself is rather simple and
even concave (it is easy to show that its Hessian is negative semidef-
inite), the function in the focus of our greedy algorithm is difficult
to analyze analytically unfortunately. This function (i ) consists
of the difference of the weighted combinations of Gini impurities
on the modified split statistics ŝ and t̂ for the pair of splits; and
(ii ) its values live on a grid formed by the potential modifications
of the split statistics, and (iii ) the steps that we can take in this
space are constrained by the fact that we need to make consistent
modifications (e.g., the record to remove from both splits has to
have the same label).

As a consequence, we validate our greedy algorithm with a
randomised experiment. We pick a robustness r , and randomly
generate a pair of split candidates by choosing the sample size,
the total number of positive and negative records as well as the
number of positive and negative records on both sides of the split
at random from a uniform distribution. For each such generated
split pair, we enumerate all possible 8r modifications and inspect
the corresponding scores to see if the pair is robust against the
removal of r records. We compare the ground truth answer found
by enumeration of the search space to the answer for the pair
found by our greedy algorithm.We repeat this experiment 1,000,000
times for robustnesses in the range from 2 to 5, 100,000 times for
robustnesses of 6 & 7, and 50,000 times for r = 8. The experiment
generates a large number of both robust and non-robust splits (up
to 30% for r = 7), and the decisions of our greedy algorithm are
consistent with the correct decisions found by enumeration in all
cases. This empirical test is not rigorous, but it does provide some
confidence that the greedy algorithm is a sound way to test for
alternative splits that have the potential to improve significantly in
the presence of the deletion of training examples.

4.3 Learning HedgeCut Ensembles
In the following, we describe how HedgeCut learns an ensemble
of randomised trees based on our notion of split robustness in
Algorithm 3.
Searching for robust splits. In contrast to ERTs, we make Hedge-
cut find splits based on globally proposed percentiles of the distri-
bution of continuous features. This is a common technique used
in popular tree-based models such as XgBoost [10]. This variant
uses the same proposals for split finding at all levels of the tree.
We discretize continuous features into buckets according to the
quantiles of their distribution in the training data. We choose this
approach, as the standard formulation of ERT needs to find the
minimum and maximum of the local sample subset per split (line 13
in Algorithm 1), which is hard to maintain under data removal. An
additional advantage of this method is that it enables a memory-
efficient feature representation for numeric features (e.g., with 8-bit
integers). Our implementation operates on a discretization of the
distribution of continuous features with twenty buckets (e.g., the
5th, 10th, 15th, ... percentiles). This discretisation is applied in a pre-
processing step on the training data before we learn the HedgeCut
ensemble.



In HedgeCut’s splitting procedure, it randomly selects K non-
constant features and generates split candidates based on the global
proposals for them (lines 10-12). For categorical features we select
a random subset of values from the domain of the feature and
check for inclusion in this set; for continuous attributes, we select
a random cut point from the percentile range of the feature (shown
in the function random_split in line 25). HedgeCut then computes
the split statistics and the corresponding Gini gain (as described in
Section 3) for each split candidate. Note that some split candidates
might not split the data in a local node at all (as we select cut points
globally and not based on the local samples), in such cases we will
simply ignore the split candidate as it provides no Gini gain.

After identifying the best split candidate from the randomly
chosen set of attributes and corresponding thresholds, HedgeCut
computes the robustness of the best split candidate to the remaining
split candidates (line 13). Thereby, we determine whether the split
decision could change later on due to potential unlearning opera-
tions. If the split is found to be non-robust, HedgeCut discards the
current set of split candidates, generates new candidates and repeats
the split scoring and robustness evaluation procedure (lines 9-13).
This process is repeated at most B times, where B is a user-defined
parameter that is typically set to a small value such as five. If a
robust best split is found, we partition the data, evolve the tree,
and recursively invoke the split finding procedure on the generated
partitions (lines 14-17).

Algorithm 3 Hedgecut tree ensemble learning.
1: function hc_ensemble(D)

Input: training set D , number of trees M
Output: tree ensemble T = {T1, . . . , TM }

2: for i = 1 to M
3: Generate tree Ti ← hc_tree(D)
4: return T

5: function hc_tree(D)
Input: training samplesD , target robustness r , minimal leaf sizenmin , maximum

number of trials to search for a robust split B
Output: Node or leaf of classification tree t

6: if |D | ≤ nmin or all candidate attributes constant in D or label constant in D
7: return Leaf labeled with class frequencies in D
8: else
9: while no robust split found
10: Randomly select k non-constant attributes attributes {a1, . . . , ak } in D
11: Generate k splits {s1, . . . , sk }, where si ← random_split(ai )
12: Determine best split s∗ ← argmaxi=1. .kGini_Gain(si , D)
13: Check robustness of best split s∗ against other splits with is_robust
14: if robust split s∗ found
15: Dl , Dr ← split D according to s∗
16: Build subtrees tl ← hc_tree(Dl ) and tr ← hc_tree(Dr )
17: return Node applying split s∗ with subtrees tl and tr
18: else if maximum number of tries B exceeded
19: Initialize subtree variants Γ ← ∅
20: for non-robust split candidate si
21: Dil , Dir ← split D according to si
22: Build subtrees til ← hc_tree(Dil ) and tir ← hc_tree(Dir )
23: Add subtree variant (si , til , tir ) to Γ
24: returnMaintenance node for the subtree variants Γ

25: function random_split(a)
26: if a is numerical
27: ac ← random cut point from the quantile range of a
28: return [a < ac ]
29: if a is categorical
30: As ← random subset of values from domain of a
31: return [a ∈ As ]

Maintenance nodes for subtree variants of non-robust splits.
If we still encounter non-robust splits after B trials, we fall back
to growing all subtree variants for the split candidates that could
become viable if records would be removed. We recursively grow
subtrees for all split candidates as if each of them would have been
chosen as the best split, and create a specialmaintenance nodewhich
contains the statistics for each split candidate and its corresponding
subtrees (lines 18-24). This maintenance node maintains the current
Gini gain for each split candidate and can thereby always delegate
operations (like prediction) to the current best split. Furthermore,
we need to maintain the subtree variants under data removal, as
will be discussed in detail in the following sections.

4.4 Predicting with a HedgeCut Ensemble
Predicting the label for an unseen record d with a Hedgecut en-
semble T works analogous to ERTs. We ask every individual tree
Ti of the ensemble to predict a label for the record d and return
the majority label as the final prediction. The prediction procedure
for each tree is initially invoked with the root node of each tree
as argument. We determine whether the current tree element is a
leaf node or not. In the case of a leaf node, we simply return the
prediction derived from the leaf statistics, by comparing the number
of positive records assigned to the leaf to the overall number of
records in the leaf. If the current node is not a leaf node, it must be
a split node and we evaluate the corresponding split criterion to
determine whether the record to predict for will be assigned to the
left or right subtree of t . Afterwards, we recursively continue with
the determined subtree. In the case of a maintenance split node,
we visit the current best alternative subtree for the split criterion
evaluation and use its child nodes for the recursive invocation of
our prediction function.

4.5 Unlearning a Training Example
We finally discuss the procedure to unlearn a record d from the
training set which is shown in Algorithm 4. In general, the algo-
rithm is similar to the previously discussed prediction, where we
traverse each tree for the sample, with the difference that we update
leafs and non-robust splits in this case. We dispatch the unlearning
of a record d for a tree ensemble T to each individual tree Ti of the
ensemble by invoking the function hc_unlearn for each root node
of the particular tree.

We now traverse each tree in hc_unlearn. When we encounter
a leaf node, we update its statistics with respect to the record to
remove d as shown in lines 2-5. We decrement the number of
samples assigned to the leaf, as well as the number of positive
samples in case d has a positive label. If we encounter a split node
instead, we distinguish between two cases: (i ) if the split node is
robust, we simply apply the split criterion to decide whether to
assign d to the left or right partition of the split and recursively
invoke hc_unlearn with the corresponding subtree (lines 7-9);
(ii ) If we encounter a non-robust split, we invoke the hc_unlearn
procedure for all its alternative subtrees to propagate the removal
of d to all tree variants. Afterwards, we update the split statistics
of all alternative subtrees with respect to the removal of d , and
update the current best alternative subtree for the non-robust split
node (lines 11-14).



Algorithm 4 Unlearning a training sample.
1: function hc_unlearn_from_tree(t , d )

Input: classification tree node t , training sample d to unlearn
2: if t is a leaf node
3: Reduce count of samples assigned to leaf t by 1
4: if d belongs to the positive class
5: Reduce count of positive samples assigned to leaf t by 1
6: else
7: if t is a robust split node
8: td ← subtree to which t assigns d
9: hc_unlearn(td , d )
10: else
11: for subtree variant ta of non-robust split node t
12: hc_unlearn(ta, d )
13: Update Gini gain of ta based on removal of d
14: Re-score subtree variants of t

5 IMPLEMENTATION
We conduct a multi-threaded single machine implementation of
HedgeCut in Rust 1.45, and discuss our design decisions and per-
formance optimisations.
Exploiting parallelism. For a start, we leverage the fact that each
tree Ti in a HedgeCut ensemble is completely independent of the
other trees, which allows us to execute both training and inference
in an embarassingly parallel manner. We learn trees in parallel on
copies of the input data, and we collect the predictions from the
trees at inference time in parallel as well. The unlearning procedure
can also be run in parallel on all the trees. We leverage fork-join
parallelism with a thread pool and work stealing, provided by the
rayon3 crate.
Vectorised computation of Gini gain. The main computational
effort during tree learning consists of computing the Gini gain of
different split candidates to decide which one to choose to evolve
a tree (line 12 in Algorithm 3). In the following, we describe how
we apply techniques from vectorised query processing [4, 22, 41]
to accelerate these computations.

As discussed in Section 3, the Gini gain for the general case
of K different classes is measured as follows:

∑K
c=1 p (c )p (¬c ) −[

wl
∑K
c=1 pl (c )pl (¬c ) +wr

∑K
c=1 pr (c )pr (¬c )

]
, where

∑K
c=1 p (c )p (¬c )

denotes the impurity before conducting a split, with p (c ) being the
probability of picking an element of class c at random from the data,
and p (¬c ) the probability of picking an element from a different
class. When evaluating a split, we partition the data into a left and
right part according to the split, and compute the weighted impurity
wl
∑K
c=1 pl (c )pl (¬c ) of the left partition, as well as the weighted

impurity wr
∑K
c=1 pr (c )pr (¬c ) of the right partition. Here, pl (c )

and pr (c ) denote the probabilities of encountering an element of
class c in the left or right partition. The weightswl andwr denote
the probabilities of a sample ending in the left or right partition, re-
spectively. Subtracting the sum of the partition impurities from the
original impurity gives the reduction which we aim to maximize.
When evaluating different split candidates, we can ignore the impu-
rity of the data before splitting (which is independent of the choice
of how to split the data), and only compute the impurity reduction
of the split wl

∑K
i=1 pl (i )pl (¬i ) + wr

∑K
i=1 pr (i )pr (¬i ), which can

be simplified towl [2pl (⊕) pl (⊖)] +wr [2pr (⊕) pr (⊖)] in the case
of binary classification with K = {⊕, ⊖}, on which we focus in this
3https://crates.io/crates/rayon

paper. We compute this quantity from four different counts that
we need to obtain from the data: the overall number of samples
n, the number of samples in the left partition kl , as well as the
number of the positive samples in the left partition kl ⊕ , and the
number of positive samples in the right partition kr ⊕ . We compute
the weights as the fraction of samples that are assigned to the left
and right partitionwl = kl /n andwr = (n−kl )/n, and estimate the
probabilities of encountering a positive samples in a partition as
pl (⊕) = kl ⊕/kl and pr (⊕) = kr ⊕/(n − kl ). Therefore, the compu-
tation of the Gini gain reduces to scanning the data, and counting
the number of records which satisfy the following three predicates:
(i ) Does the record have a positive label? (ii ) Does the record have
a positive label and the split assigns it to its left partition? (iii ) Does
the record have a positive label and the split assigns it to its right
partition?

We design two vectorised counting approaches4 (one for discre-
tised continuous features and one for categorical features) based
on SIMD (“Single-Instruction-Multiple-Data”) instructions, which
compute the desired quantities nl , nl+ and nr+ from a data sample
of length n and a split to evaluate.
Discretised continuous features. We leverage 8-bit integers (u8 in
Rust) to represent the discretized quantiles of the feature values
as well as the cut off value for the split comparison. Our main pro-
cessing loop operates on a batch of 16 records in parallel and first
loads their feature values as well as label into SIMD registers. Next,
we compare the feature values to the cut offs via _mm_cmplt_epi8
where the boolean outcome denotes whether the record is assigned
to the left or right partition of the split. We apply a boolean AND
(and a NAND respective) to the result of the comparison and the
label vector to get the boolean indicators for the conjunction of the
test whether a record is positive and assigned to the left (and re-
spective to the right) partition of the split. We finally load the result-
ing bit indicator into an integer register via _mm_movemask_epi8
and count the number of set ones in the bit vector using Rust’s
count_ones() function which will make use of the CPU’s POPCNT
instruction for counting if it is available.
Categorical attributes. Computing the counts required for determin-
ing the Gini gain on categorical attributes is more difficult, as we
have to test for set inclusion instead of just comparing to a thresh-
old. Our vectorised implementation handles categorical attributes
with a cardinality of up to 32, and we adaptively use non-SIMD code
for categorical attributes with a higher cardinality. For categorical
attributes, we test whether a particular record is assigned to the left
(or right) partition of a split by checking whether the attribute’s
value is contained in a randomly chosen subset of the domain of
the attribute (the bits set in the subset variable). Our vectorised
implementation operates on a batch of four 32-bit values.
Further optimisations. We additionally remove branches in the
non-vectorised Gini gain code via predication (replacing condi-
tional statements with additions of boolean variables). Analogous
to scikit-learn, we partition the training data in-place after deciding
on a particular split, and recursively invoke the split finding pro-
cedure with pointers (references to mutable slices in Rust) to the

4https://github.com/schelterlabs/hedgecut/blob/master/src/scan.rs
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dataset #users #num #cat #data points

income 32,560 4 8 390K
heart disease 70,000 5 6 770K
credit 150,000 8 - 1.2M
recidivism 7,214 4 6 110K
purchase data 12,330 10 7 210K

Table 1: Number of users, numerical features (#num), cate-
gorical features (#cat) and sizes of the datasets.

resulting subpartitions. We apply a copy-on-write data structure us-
ing Rust’s std::borrow::Cow to propagate the constant attribute
identifiers during the learning procedure. This allows us to avoid
heap allocations in cases where the set of constant attributes does
not change.

6 EVALUATION
We experimentally evaluate HedgeCut to showcase that our ap-
proach can unlearn training samples in less than a millisecond
(Section 6.2.1), and is able to perform unlearning as part of high
throughput serving workloads (Section 6.2.2) with the same accu-
racy as a retrained model (Section 6.3.1). Furthermore, we compare
HedgeCut to popular tree-based ML models like Random Forests in
terms of accuracy and training cost (Sections 6.3.2 & 6.4.1), measure
the benefits of our vectorised Gini gain computation (Section 6.4.2),
and explore the impact of certain parameters of HedgeCut (Sec-
tion 6.5).

6.1 Setup
We describe the data, baseline models and evaluation metrics used
for our experiments.
Datasets. We evaluate HedgeCut on binary classification tasks
for five publicly available datasets from various domains. We aim
for these datasets to be representative of data for which GDPR
deletion requests might be issued, and therefore select privacy-
critical datasets only, where each row represents sensitive personal
data of an individual. Table 1 lists the summary statistics of these
datasets.
Adult income. This dataset5 contains 390K data points in 32,560
records of demographic and financial data, with four numerical and
eight categorical attributes, and the target variable denotes whether
a person earns more than 50,000 dollars per year or not.
Medical records about heart disease. This dataset6 contains 770K
data points in 70,000 patient records comprised of five numerical
and six categorical measurements with respect to cardiovascular
diseases, and the target variable denotes the presence of a heart
disease.
Credit information. This dataset7 contains 1.2M data points of finan-
cial information in eight numerical attributes for 150,000 people
and the target variable denotes whether a person has experienced
financial distress.

5https://archive.ics.uci.edu/ml/datasets/Adult
6https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
7https://www.kaggle.com/c/GiveMeSomeCredit

Recidivism. This dataset8 contains 110K data points in four numeri-
cal and 6 categorical attributes of demographic data and data about
prior engagements with law enforcement and the judicial system
for 7,214 individuals arrested in Broward County, Florida, in 2013
and 2014. The target variable denotes whether a personwas charged
with new crimes over the next two years.
Online purchase behavior data. This dataset9 contains 210K data
points in ten numerical and seven categorical attributes about
browsing behavior in 12,330 individual sessions of an online shop,
and the target variable denotes whether the session ended in a
purchase or not.
Ethical note: We are aware of the controversies and dangers of
applying automated decision making via ML to real-world problems
like judicial decisions [36] and want to stress that our experiments
should not be understood as an endorsement of such approaches.
We select these datasets and tasks only with the goal to showcase
HedgeCut’s applicability to remove personal sensitive data from
models trained on real-world data in an academic context.
Baseline algorithms. We compare HedgeCut against several im-
plementations of common tree-based classification methods from
the popular library scikit-learn [28], using version 0.22.1: Extremely
Randomised Trees, the classic ERT algorithm from [17], discussed in
Section 3, which is the basis for HedgeCut; the well-known Random
Forest [6] algorithm, which trains an ensemble of decision trees
on samples of the data with bootstrap aggregation and random
selection of features; and a single Decision Tree learned with an op-
timised version of the CART algorithm [7]. Note that even though
scikit-learn is a Python library, the tree-based algorithms are im-
plemented in highly optimised Cython code, which is translated
into C code and compiled to machine code.

If not reported otherwise, we configure all algorithmswith the de-
fault hyperparameter settings recommended in the documentation
of scikit-learn.10. For the comparison between ERT and HedgeCut,
we make sure that both algorithms run with identical settings taken
from the original ERT paper [17]: learning an ensemble of 100 trees
with a minimal leaf size of two, picking a random fraction of at-
tributes for split testing proportional to the square root of the total
number of attributes, and we make both use the Gini gain for split
selection. The random forest classifier operates with similar default
parameters (training an ensemble of 100 trees with Gini gain as
split selection criterion).
Metrics. We experiment using our single machine implementation
in Rust 1.45 on a machine with an i7-8650U CPU @ 1.90GHz with
four cores and 16GB of RAM, running Ubuntu Linux 16.04. We
report the runtime for all algorithms (both for training and predic-
tion), in which we do not include the time to load and parse the
input datasets. We report the accuracy of the resulting classifiers
on a randomly chosen, held-out test set comprised of 20% of the
data points. For all metrics, we report both the mean and standard
deviation from a series of experiments.

8https://github.com/propublica/compas-analysis/
9https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+
Dataset
10https://scikit-learn.org/stable/modules/ensemble.html#forest
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Figure 3: Time to unlearn a training example with Hedge-
Cut compared to retraining the baselines models without
this example, plotted inmicroseconds on a logarithmic scale.
HedgeCut conducts unlearning in 100 µs, while the baselines
require more than three orders of magnitude more time to
retrain in the majority of cases.

Reproducibility. We use publicly available datasets and make
both our experimentation code available at https://github.com/
schelterlabs/hedgecut.

6.2 Unlearning
6.2.1 Low-latency unlearning. We design our first experiment

with respect to the main goal of our work, which is to enable low-
latency unlearning of training samples from a trained model. We
train a model for HedgeCut and the baselines for all five datasets.
Next, we choose a random training example to remove. We unlearn
this training example with HedgeCut, and retrain the baseline al-
gorithms on the training set without the training example (as they
do not possess unlearning capabilities). We measure the time for
unlearning and retraining and plot the mean and standard deviation
of the runtimes. We repeat this procedure for 0.1% of the training
examples of each datasets and repeat the whole process on three
different train/test splits of the datasets.

Figure 3 illustrates the resulting runtimes in microseconds (plot-
ted on a logarithmic scale) for the different algorithms. HedgeCut
is able to consistenly unlearn a single training example in around
100 µs for all datasets, while the retraining of the baseline models
takes more than three orders of magnitude longer in the majority
of cases. Note that the retraining will even be longer in real-world
setups as we did not include the data loading and parsing time in
our measurements. This experiments shows that HedgeCut can
unlearn training examples with a low latency well beyond a mil-
lisecond, which makes it usable for usage in ML serving systems,
which typically have an SLA of answering prediction requests in
several dozen milliseconds (including network round-trip time).

6.2.2 Unlearning under prediction load. Our next experiment
focuses on the impact that unlearning requests have on the through-
put of prediction workloads. We mimic a deployed model in an ML
serving system under heavy prediction load by having each model
predict for items from the test set 100,000 times, and we measure
how many prediction requests HedgeCut can answer per second.
We repeat this procedure, but “mix-in” unlearning requests for 0.1%
of the training examples, by replacing randomly selected prediction
requests with unlearning requests. We repeat this experiment ten
times for each dataset, and plot the resulting mean throughput (and

predictions/sec
dataset predictions/sec with unlearning

income 20,127 (±1,253) 20,041 (±1,227)
heart 13,192 (±512) 13,238 (±759)
credit 17,030 (±390) 16,891 (±731)
recidivism 36,667 (±3,032) 37,349 (±2,656)
purchase data 26,120 (±1,795) 26,435 (±1,738)

Table 2: Prediction throughput for HedgeCut per dataset
without andwithmixed-in unlearning requests. Unlearning
requests do not decrease its overall prediction throughput.

the standard deviation) in Table 2. We observe that HedgeCut can
generate well over 10,000 predictions per second with up to 36,667
for the relatively small recidivism dataset, which is again an in-
dication that our model is a suitable candidate for deployment in
demanding ML serving setups. We observe no significant difference
between the throughput with and without unlearning requests. We
confirm this observation with a two-sample Kolmogorov-Smirnov
test on the numbers per dataset, which indicates no distributional
difference as well.

6.3 Predictive Performance
6.3.1 Predictive performance under unlearning. Our next experi-

ment is meant to validate the predictive performance of HedgeCut
after unlearning the maximum number of training examples. We
repeatedly observed that unlearning even a single training example
can change some of the predictions of a classifier, therefore we
want to validate that unlearning and retraining lead to identical
performance. We train HedgeCut on an 80% training set randomly
chosen from each dataset, have it unlearn 0.1% of the training sam-
ples which we choose at random, and measure the accuracy of the
resulting model on the held-out test data afterwards. We compare
this to the accuracy achieved by a second HedgeCut model (with-
out unlearning) which we retrain from scratch on the training data
without the unlearned samples. We repeat this procedure twenty-
five times for all five datasets and plot the resulting mean accuracies
(as well as their standard deviations) in Figure 4(a).

We do not observe a difference in the predictive performance
of the model that unlearned the training samples compared to the
model that was re-trained without them. We compute the absolute
mean difference between these two variants, which is always less
than 0.0004, and conducted a two-sample Kolmogorov-Smirnov
test between the accuracies for each dataset, which finds no dis-
tributional difference. We confirm that the HedgeCut model with
unlearned data points exhibits the same predictive performance as
the retrained model.

6.3.2 Predictive performance of HedgeCut in comparison to the
baselines. Next, we measure the out-of-the box predictive perfor-
mance of HedgeCut. We compare HedgeCut and our baselines with
their default hyperparameters on our five datasets. The goal of
this experiment is to showcase that HedgeCut’s out-of-the-box ac-
curacy is on par with ERTs and commonly used ensemble-based
tree methods such as Random Forests [6]. Note that the general

https://github.com/schelterlabs/hedgecut
https://github.com/schelterlabs/hedgecut


income heart
disease

credit recidivism purchase
behavior

dataset

0.6

0.7

0.8

0.9

ac
cu

ra
cy

unlearn
retrain

(a) Predictive performance of a HedgeCut model that un-
learned 0.1% of training samples compared to a HedgeCut
model that was retrained without these training samples.
The model with unlearning exhibits the same accuracy as
the retrained model.
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(b) Predictive performance of HedgeCut compared to the
baselines for our five datasets. HedgeCut provides high-
accuracy results and performs on par with Random Forest
in the majority of cases.
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(c) Comparison of the training time of HedgeCut and the
baseline methods. Among the ensemble-based methods,
which provide high accuracy, our HedgeCut implementa-
tion outperforms both the random forest and ERT in four
out of five datasets.

Figure 4: Evaluation of the predictive performance and training time of HedgeCut. HedgeCut provides the same accuracy after
unlearning user data compared to a retrained model (Figure 4(a)). Furthermore, HedgeCut’s accuracy on our five datasets is
on par with the accuracy of extremely randomised trees and a random forest model (Figure 4(b)), while HedgeCut exhibits a
lower training time than these methods in four out of five cases (Figure 4(c)).

predictive performance of ERTs and Random Forests is well estab-
lished, we refer readers to the extensive study in the original ERT
paper [17] for details. We generate a random train/test split of the
data, train each model on the train data and measure the accuracy
of the model on the unseen test data. We repeat this procedure ten
times and plot the resulting mean accuracy (and the corresponding
standard deviation) in Figure 4(b). The results exhibit the following
pattern, which is consistent over all datasets: The three ensemble-
based methods (Random Forest, ERT, HedgeCut) provide a higher
accuracy than the single decision tree. ERT and HedgeCut give the
best performance, closely followed by Random Forest. These results
confirm that HedgeCut provides on-par performance with ERT and
Random Forest, and might be used as a drop-in replacement in
scenarios where these classifiers are deployed.

6.4 Training Cost
6.4.1 Training time in comparison to the baselines. Next, we

compare the training time of HedgeCut to the baselines, with the
goal of showing that HedgeCut is competitive with respect to its
training time, even though it has to conduct additional work like
robustness scoring. This experiment also serves a validation of the
careful implementation and optimisation decisions described in
Section 5. We make HedgeCut, ERT and Random Forest all train
an ensemble of 100 trees with Gini gain as splitting criterion. We
tried to enable multi-threading for both ERT and Random Forest,
by setting their parameter n_jobs to -1 (allowing them to use all
cores), however this resulted in a drastic increase of their runtimes.
We therefore leverage their faster single-threaded variants for com-
parison. We train models for each dataset, and measure the training
time.We repeat this procedure ten times and plot the resultingmean
training times (as well as the corresponding standard deviations)
in Figure 4(c).

We make several observations. First, we find that the decision
tree (which only learns a single tree instead of an ensemble) pro-
vides the lowest runtime, and outperforms the ensemble-based

methods in all cases. However, this method does not provide a com-
petitive predictive performance as we have seen in the previous
experiment in Section 6.3.2. When comparing the ensemble-based
methods, we find that both the ERT and HedgeCut outperform Ran-
dom Forest in all cases, while all models can be trained in a couple
of seconds for our datasets. In four out of five datasets, HedgeCut
outperforms ERT, even though it has to conduct additional work
for robustness searches. We conclude that our HedgeCut implemen-
tation provides a competitive runtime compared to the widely-used
implementations of popular ensemble methods like scikit-learn’s
Random Forest. We note that the baseline implementations could
potentially also be benefit from our parallelisation and vectorisation
techniques.

Wewould also like to stress that the short training times observed
here are a result of the lab conditions of this experiment, and are
not representative of the time and the cost to retrain and redeploy a
model in a real world deployment. Redeployment not only requires
model retraining, but also data preproccesing, data validation steps,
and complex deployment operations [27, 29]. Our approach allows
us to avoid these costs for GDPR deletion requests, as we can directly
update the deployed model in place.

6.4.2 Benefits of Vectorisation. In this experiment, we measure
the performance improvements gained by our vectorised Gini gain
implementations. We run the following two micro-benchmarks: We
compare the non-SIMD code to the non-SIMD code with branches
removed and our vectorised SIMD implementations from Section 5.
In addition, we reimplement an existing SIMD-based Gini gain
computation technique for decision tree learning from mlpack for
comparison, which only leverages instruction-level parallelism for
summation of the label counts per split.11

We execute the Gini gain computation for continuous features
on 96,214 records from the credit dataset, where we test for a cut
off in the past_due attribute. The non-optimised code taskes 849
µs, removing branching reduces this to 588µs (-31%), and the usage
of SIMD instructions in our vectorised implementation decreases
11https://www.mlpack.org/doc/mlpack-3.1.1/doxygen/gini__gain_8hpp_source.html

https://www.mlpack.org/doc/mlpack-3.1.1/doxygen/gini__gain_8hpp_source.html
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(a) Impact of the maximum number of tries
per split B on the accuracy of HedgeCut.
Low values (B < 10) result in a higher ac-
curacy, and the accuracy stays constantly
lower for larger values, where HedgeCut
will find more robust but lower quality
splits.
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(b) Impact of the maximum number of tries
per split B on the training time of Hedge-
Cut. The effect is dataset dependent with
a growing runtime for larger values (due
to longer robustness searches). There is a
sweet spot at B = 5 for all datasets.
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(c) Impact of the fraction of unlearnable
users ϵ on the accuracy of HedgeCut. As
expected, the accuracy is not affected by
the ϵ parameter.
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(d) Impact of the fraction of unlearnable
users ϵ on the training time of HedgeCut.
Larger fractions increase the runtime, as a
higher number of subtree variants have to
be trained. The impact is dataset dependent
and is low for the range of ϵ up to 0.1%
(unlearning every 1000th user).

Figure 5: Sensitivity of the accuracy and runtime of Hedgecut with respect to the maximum number of tries per split and the
robustness of the resulting model. The accuracy is largely unaffected which makes these parameters easy to tune for runtime.
Over all datasets, setting the maximum number of tries per split B to 5 and the fraction of unlearnable users ϵ to 0.1% (every
thousandth user) constitutes a sweet spot with high accuracy and managable runtime.

the runtime further to 420µs (-50.5%). The mlpack variant only
slightly improves upon the non-optimised code with a runtime
of 847µs. We execute the gini gain computation for categorical
attributes on 9,863 records from the purchase behavior purchase
dataset, where we test for set membership in the browser_type
attribute. The non-optimised code taskes 82 µs, removing branching
reduces this to 58µs (-29%), and the vectorised version decreases
the runtime further to 44µs (-46%). Again, the mlpack variant only
marginally improves the runtime over the non-optimised code with
75µs. In summary we find that our vectorised implementations
double the performance of the scan-based Gini gain computations.
We attribute the low performance of the mlpack variant to the fact
that it has been designed for classical decision tree learning, where
the overall best split for a sample needs to be determined (and the
summations of the label counts can become a bottleneck). ERTs on
the other hand only evaluate a small number of randomly chosen
split candidates, and the main computational bottleneck are the
threshold comparisons which we accelerate with SIMD (Section 5).

6.5 Parameter Sensitivity of HedgeCut
Finally, we evaluate the sensitivity of the accuracy and runtime
of HedgeCut to different parameter settings. We start with the
maximum number of tries B to search for robust splits per node
(line 18 in Algorithm 3). We vary this parameter between 1 and 100,
and train and evaluate models on all datasets, while recording the
accuracy and training time. We repeat this procedure ten times per
dataset. Figure 5(a) plots the resulting mean accuracies per dataset.
Small values (B < 10) result in a higher accuracy, and the accuracy
stays constantly lower for larger values, which we attribute to the
fact that HedgeCut will find more robust but lower quality splits
when allowed a high number of trials. We illustrate the impact of
the maximum number of tries per split B on the training time of
HedgeCut in Figure 5(b) (relative to the training time for B = 1).
The effect is dataset dependent with an initial drop of the runtime
for small positive values of B (which allows us to avoid to train
many subtree variants), and a growing runtime for larger values

(due to longer robustness searches). We observe a sweet spot at
B = 5 with respect to accuracy and training time for all datasets.

Next, we investigate the impact of the parameter ϵ specifying the
fraction of unlearnable users in the model. We vary this parameter
between 0.01% (removal of every ten-thousandth user, the fraction
estimated by industry practitioners) and 2% (deletion request by
every 50th user, an unrealistic value), and again train and evaluate
models on all datasets, while recording the accuracy and training
time. Figure 5(c) shows that the accuracy of the produced models is
unaffected by this parameter, which is expected as this parameter
only results in the training of more subtree variants in the ensemble.

Figure 5(d) illustrates the impact of the fraction of unlearnable
users ϵ on the training time of HedgeCut (relative to the training
time for ϵ = 0.01%). Larger fractions increase the runtime, as a
higher number of subtree variants have to be trained. The impact is
dataset dependent (e.g., only a slight increase for the heart disease
dataset but a rather drastic increase for the income data). However,
the impact of this parameter is low in the range of 0.01% to 0.1% (un-
learning every thousandth user), which corresponds to the fraction
of unlearnable users estimated by industry practitioners.

We additionally report the fraction of non-robust nodes in the
trees in Figure 6(a). The ratio is dataset dependent and relatively
low (smaller than 2% in the majority of cases). For larger values of ϵ ,
we observe a corresponding increase in the overall number of nodes
in the trees however. This increase is below two for ϵ ≤ 0.1% in all
cases, and stays below four for higher values of ϵ for all datasets
(with the exception of the income dataset, where observe a steeper
growth, which explains its steep runtime increase in Figure 5(b)).
We attribute this increase in the tree size to the generation of more
less discriminative (but still robust) splits during the repetitions in
our split search procedure 4.3, dictated by the maximum number of
tries per split B. In summary, we find that Hedgecut compensates
for larger values of ϵ by generating larger trees with a relatively
constant fraction of non-robust nodes.

We run an additional experiment, where we inspect the impact
of the minimal leaf size per tree on the number of split switches
(changes of alternative subtrees for non-robust nodes) at prediction
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(b) Impact of the leaf size on the num-
ber of split switches per tree during un-
learning. The number of switches is low
(less than one per tree on average) and
decreases with larger leaf sizes.

Figure 6: Sensitivity of the ratio of robust to non-robust
nodes and the number of required split switches at predic-
tion time to various parameters in Hedgecut.

time. For that, we train an ensemble of 100 trees with an increasing
minimal leaf size of 2, 4, 8, 16, 32, 64 and 128, and remove 0.1% of
users from the trained model afterwards (chosen at random). We
repeat this experiment 20 times and report the mean number of
split switches per tree for each dataset in Figure 6(b). We find that
the number of switches is low (less than one per tree on average)
and decreases with larger leaf sizes, which is expected as trees with
larger leaf sizes contains less intermediate nodes.

In summary, we find over all datasets that setting the maximum
number of tries per split B to 5 and the fraction of unlearnable
users ϵ to 0.1% (every thousandth user) constitutes a sweet spot
with high accuracy and manageable runtime. In practice, data scien-
tists could start from this sweet spot and run some of the outlined
parameter sensitivity experiments to determine well-working pa-
rameters for their data.

7 RELATEDWORK
Ensuring that data processing technology adheres to legal and ethi-
cal standards in a fair and transparent manner [36] is an important
research direction, which attracts attention from law makers and
governments. The direction of efficient data erasure [3] is addressed
by redesigning fundamental building blocks of data processing sys-
tems [31]).

The machine learning community has pioneered work on remov-
ing data from models under the umbrella of “decremental learning”
for support vector machines [8, 9, 21]. In contrast to our work, these
gradient based approaches always restart the training and therefore
need to reaccess the training data for updating the model. This
characteristic introduces operational complexity as model training
and serving (and the storage of training data) are typically handled
in different systems and infrastructures [1, 27]. The acceleration of
such retraining is in the focus of recent work [26, 39]. We refer to
the discussion in [32] for details on why gradient descent requires
reaccessing the training data, and is therefore not applicable in our
problem setting.

Ginart et. al. [18] explore a problem setting similar to ours for
stochastic algorithms, in particular for variants of k-Means cluster-
ing. We build upon our initial work [32], which proposes efficient
decremental update techniques for decremental learning. This work
however only targets very basic ML models, does not account for

the fact that only a small fraction of the users will typically issue
deletion requests, and some of the discussed approaches (like the
nearest neighbors classifier) still need to memorize the training
data.

An orthogonal technique to protect the privacy of user data in
machine learning use cases is differential privacy [12]. However, it
is very difficult to design differentially private algorithms (even for
experts [11]), and this approach requires a decision on the limit of
the acceptable privacy loss in practice.

Decision trees [7] and their ensemble-based variants [6, 10, 17]
belong to the most widely used models for supervised machine
learning, available in popular ML libraries such as scikit-learn [28].
The instability of the splitting decisions of decision trees under data
changes is a known phenomenon [13], and sometimes addressed by
proposing conjunctive predicates [23], which is difficult to imple-
ment efficiently. While some incremental tree learning approaches
are known, they require recursive reorganisation of the tree, which
is hard to parallelize and scale-out [37] and additionally need to
memorize the training data [20]. There has also been research on
on accelerating the runtime of decision trees at the inference stage
with task- and instruction-level parallelism for an already trained
model [2, 40], which is complementary to our methods for acceler-
ating the training of the tree models with vectorisation techniques.

8 CONCLUSION & FUTUREWORK
We introduced the problem of low-latency machine unlearning,
which is concerned with maintaining a deployed ML model in place
under the removal of a small fraction of training samples without
retraining. We proposed a classification model called HedgeCut
for this setting, which is based on an ensemble of randomised
decision trees. We detailed how to efficiently implement HedgeCut
and conducted an experimental evaluation on five privacy-sensitive
datasets, where we find that HedgeCut can unlearn training samples
with a latency of less than a millisecond and can answer up to 36,000
prediction requests per second. We also found the training time
and predictive accuracy of HedgeCut to be similar to widely used
implementations of tree-based ML models such as Random Forests.

In future work, we plan to extend HedgeCut to support regres-
sion scenarios. Furthermore, we aim to investigate how to further
reduce latency during prediction and unlearning by switching to a
different data structure than a list of hashmaps after training for the
tree ensemble, and by leveraging instruction-level parallelism [40].
Another important direction for future work is to explore whether
HedgeCut can also support online learning of the decision trees,
in addition to maintaining them under data deletion. Furthermore,
we will explore an implementation of HedgeCut in Differential
Dataflow [24] to integrate it into complex data processing pipelines.
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