
mlwhatif: What If You Could Stop Re-Implementing Your
Machine Learning Pipeline Analyses Over and Over?

Stefan Grafberger

AIRLab,

University of Amsterdam

s.grafberger@uva.nl

Shubha Guha

University

of Amsterdam

s.guha@uva.nl

Paul Groth

University

of Amsterdam

p.t.groth@uva.nl

Sebastian Schelter

University

of Amsterdam

s.schelter@uva.nl

ABSTRACT
Software systems that learn from data with machine learning (ML)

are used in critical decision-making processes. Unfortunately, real-

world experience shows that the pipelines for data preparation,

feature encoding and model training in ML systems are often brittle

with respect to their input data. As a consequence, data scientists

have to run different kinds of data centric what-if analyses to evalu-

ate the robustness and reliability of such pipelines, e.g., with respect

to data errors or preprocessing techniques. These what-if analyses

follow a common pattern: they take an existing ML pipeline, create

a pipeline variant by introducing a small change, and execute this

variant to see how the change impacts the pipeline’s output score.

We recently proposed mlwhatif, a library that enables data sci-

entists to declaratively specify what-if analyses for an ML pipeline,

and to automatically generate, optimize and execute the required

pipeline variants. We demonstrate how data scientists can lever-

age mlwhatif for a variety of pipelines and three different what-if

analyses focusing on the robustness of a pipeline against data er-

rors, the impact of data cleaning operations, and the impact of data

preprocessing operations on fairness. In particular, we demonstrate

step-by-step how mlwhatif generates and optimizes the required

execution plans for the pipeline analyses. Our library is publicly

available at https://github.com/stefan-grafberger/mlwhatif .

PVLDB Reference Format:
Stefan Grafberger, Shubha Guha, Paul Groth, and Sebastian Schelter.

mlwhatif: What If You Could Stop Re-Implementing Your Machine

Learning Pipeline Analyses Over and Over?. PVLDB, 16(12): 4002 - 4005,

2023.

doi:10.14778/3611540.3611606

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/shubhaguha/mlwhatif-demo.

1 INTRODUCTION
Software systems that learn from data with machine learning (ML)

are used in critical decision-making processes [14]. Unfortunately,

real-world experience shows that the pipelines for data preparation,

feature encoding and model training in ML systems are often brittle

with respect to issues in the data they process [9, 10, 14].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.

doi:10.14778/3611540.3611606

Data centric what-if analysis with mlwhatif. Data scientists

play a critical role in ensuring the robustness and fairness of these

pipelines by performing data-centric what-if analyses. These analy-
ses focus on understanding the sensitivity of the pipelines to small

changes to their input data or pipeline operators [2]. Such analyses,

for example, focus on (𝑖) the robustness against data errors [13],
asking what-if the input data to a pipeline had certain errors like
missing values or outliers?, (𝑖𝑖) the impact of preprocessing opera-

tors on the pipeline’s fairness [1], asking what-if the pipeline filtered
or featurized the training data differently?, and (𝑖𝑖𝑖) the impact of

data cleaning operations [7], asking what-if the pipeline applied a
particular error detection and cleaning technique?

Performing what-if analyses on ML pipelines poses several tech-

nical challenges. Many analysis techniques are designed for single

input datasets and are not easily integrated with existing pipeline

code. Additionally, the repeated execution of pipeline variants in-

curs significant overhead, making it difficult for data scientists to

iterate quickly during development.

We recently proposed mlwhatif [2] in response to these prob-

lems. mlwhatif enables data scientists to declaratively specify what-
if analyses for an ML pipeline, and to automatically generate, op-
timize and execute the required pipeline variants. Our approach
builds on dataflow representations for ML pipelines from previous

work [3, 4, 11, 12].

Demonstration Details. We showcase mlwhatif in three scenar-

ios, each highlighting a different what-if analysis, which mlwhatif
can automatically apply to existing pipeline code. Attendees will be

able to experiment with these analyses on pipelines from different

domains, implemented using popular data science libraries like

scikit-learn and pandas. We provide a web-based user interface for

the attendees to experience mlwhatif from the perspective of a data

scientist. In particular, they can experiment with what-if analyses

focusing on the robustness of a pipeline against data errors, the

impact of preprocessing operators on the pipeline’s fairness, and

the impact of data cleaning operations.

Our web-based user interface additionally allows attendees to

explore the inner workings of mlwhatif: we show how mlwhatif
extracts a dataflow plan from the original pipeline, and how it

leverages so-called “pipeline patches” to create pipeline variants,

according to the attendee’s configuration of the what-if analyses.

Furthermore, we visualize mlwhatif’s’ multi-query optimization

process step-by-step, as it applies different optimization rules and

merges all optimized pipeline variants into one joint execution plan.

We provide the fully working web-based user interface for our

demonstration, along with all example pipelines and datasets, at

https://github.com/shubhaguha/mlwhatif-demo.

https://github.com/stefan-grafberger/mlwhatif
https://doi.org/10.14778/3611540.3611606
https://github.com/shubhaguha/mlwhatif-demo
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611606
https://github.com/shubhaguha/mlwhatif-demo

Stefan Grafberger, Shubha Guha, Paul Groth, and Sebastian Schelter

Dataflow plan for the
original ML pipeline

Data Patch Data Patch

Original ML pipeline
code

Variant 1 Variant 2

Variant 3 Variant n

2 Plan Extraction

Variant Generation

Optimized dataflow
plan for all variants

Multi-Query Opt.

3

4

Op. Patch

Declaratively specified
what-if analyses

 Report Gen.5

1
Data  
Scientist

Reports for analyses

Robustness

Preproc
Data
cleaning Model P.

Figure 1: Overview of mlwhatif: The data scientist provides
the code for an ML pipeline and declaratively specifies the
what-if analyses to run on that pipeline 1 . Next, mlwhatif
extracts a dataflow plan from the original pipeline via code
instrumentation 2 . Based on the specified what-if analyses
and the extracted plan, mlwhatif generates different pipeline
variants with “pipeline patches” 3 , and merges the variants
into a single joint dataflow plan. Next, mlwhatif applies var-
ious multi-query optimization rules to re-use shared inter-
mediates (illustrated as black operators) between variants 4 .
Finally, mlwhatif executes the optimized plan, and generates
a report per analysis, which details the variants and their
output scores 5 .

2 SYSTEM OVERVIEW
In the following, we provide a brief overview of mlwhatif and refer
to the original publication [2] for further details.

Core ideas. Figure 1 provides an overview of how mlwhatifworks
internally. 1 mlwhatif only requires the user to provide the source
code of their pipeline and declaratively specified what-if analyses

to run. 2 Then, mlwhatif starts by extracting logical query plans,

modeled as directed acyclic graphs (DAGs) of preprocessing op-

erators, from ML pipelines that use popular libraries like pandas

and scikit-learn. It supports code that combines relational opera-

tions on dataframes and estimator/transformer pipelines on matrix

data for feature encoding [3, 4]. Additionally, mlwhatif extracts all
function call arguments necessary for “replaying” a plan operator

on different input data, and thus operates on a fully re-executable

plan, which can be re-written and re-executed as needed.

With this plan as starting point, mlwhatif offers an interface to

express what-if analyses. These what-if analyses follow a common

pattern: they take an existing ML pipeline, create a pipeline variant

by introducing a small change, and execute this pipeline variant to

see how the change impacts the pipeline’s output score. Each such

analysis is written by an expert (and provided to other data scientists

later). Data scientists using mlwhatif only need to configure these

what-if analyses as they wish.

3 The what-if analyses model their changes to the original

pipeline plan via a declarative abstraction called pipeline patches.
Based on a configuration from the user, what-if analyses gener-

ate patches to create the required pipeline variants. 4 Given the

resulting pipeline variants, mlwhatif then applies multi-query opti-

mization to compute and execute a joint query plan for all pipeline

variants. 5 Finally, mlwhatif generates a detailed report with the

output scores of different variants originating from the analyses

for the user.

Modeling what-if analyses with “pipeline patches”. Internally,
mlwhatif generates different pipeline variants for what-if analyses
by applying pipeline patches to the dataflow plan of the original ML

pipeline. Such a patch defines how to change the plan of the origi-

nal pipeline. mlwhatif currently supports three types of pipeline

patches: model patches, operator patches, and data patches. Model

patches denote that a pipeline variant should use a different model,

operator patches specify the removal or replacement of a particu-

lar operator in the plan, and data patches specify that a particular

operation should be applied to a column of an input data source. In

contrast to the other patches, data patches are declarative as they

only specify the semantics of the operation to apply to the input

column, but no plan location to change.

Multi-query optimization on ML pipeline variants. mlwhatif
optimizes the joint execution of all generated ML pipeline variants,

via subsumption-based optimization rules. The goal of these rules

is to increase the shared work between all variants. These opti-

mizations focus on the patches for the original plan. Because all

subexpressions until the first patch location are already shared be-

tween variants, mlwhatif only needs to consider rewrites to move

the patches further up in the plan to potentially re-use more subex-

pressions. Besides common subexpression elimination, mlwhatif
currently applies four optimization rules: projection push-up, filter

addition push-up, filter removal push-up, and UDF split-reuse, and

uses cost-based heuristics to decide when to apply them. The first

three optimizations try to push-up projections and filters as high

as possible, while UDF split-reuse aims to optimize the execution

of expensive UDFs, which are repeatedly applied to large fractions

of the data.

3 DEMONSTRATION DETAILS
We demonstrate mlwhatif with a web-based interface (illustrated

in Figure 2), which allows attendees to configure three what-if anal-

yses [1, 6–8, 13] , and automatically apply them to existing pipeline

code from different domains (healthcare, product reviews, census

data). Attendees will analyze the source code of the pipelines, and

inspect reports about the results of the analyses. Furthermore, they

can leverage mlwhatif’s runtime estimation to tailor the analysis

configuration to their time budget. Additionally, the interface visu-

alizes the internal multi-query optimization steps that mlwhatif
applies to reduce the runtime of the analyses.

We make the web interface, datasets and pipeline code publicly

available at https://github.com/shubhaguha/mlwhatif-demo.

In particular, we demonstrate each what-if analysis as follows:

(1) Attendees choose one of our provided ML pipelines, and we

briefly introduce them to the ML pipeline code and the what-if

analysis.

(2) Attendees use mlwhatif’s runtime estimation feature to esti-

mate the runtime of different analysis configurations.

(3) Attendees select an analysis configuration and execute the

pipeline analysis. Afterwards, they inspect and discuss the re-

sulting reports with us and other attendees.

https://github.com/shubhaguha/mlwhatif-demo

mlwhatif: What If You Could Stop Re-Implementing Your Machine Learning Pipeline Analyses Over and Over?

 Visualises all execution and
 optimization stages step-
 by-step.

 Attendees see intermediate  
 execution plans ‘before’
 and ‘after’ optimization.

 Attendees can explore the
 final joint execution plan.

2

Demonstration interface

 Attendees configure and  
 execute what-if analyses in
 the sidebar on the left.

 On the right, attendees
 explore the result report.

 In the middle, attendees
 edit the source code of the
 ML pipeline.

1
Demonstration Interface

Optimization Explorer

Figure 2: The web-based user interface for our demonstration. First, attendees experience mlwhatif from the perspective of a
data scientist 1 . Afterwards, they explore how mlwhatif executes the configured what-if analyses, and follow the multi-query
optimization process step-by-step 2 .

(4) To provide attendees with a deeper understanding of how

mlwhatif generates, optimizes, and executes analyses inter-

nally, our web-based frontend provides step-by-step visualiza-

tions of the execution and optimization process. Attendees can

freely explore those visualizations. First, they will observe how

the dataflow plan is extracted from the original pipeline and

how the what-if analyses use pipeline patches to create the

pipeline variants for their configured what-if analysis.

(5) Then, they can follow how the generated pipeline variants get

optimized and merged into one joint execution plan. Attendees

will interactively explore the execution plans in different stages

of our multi-query optimizer.

In detail, we demonstrate the following three scenarios:

What-If Analysis 1: Robustness against data errors. This anal-
ysis allows attendees to test the robustness of ML pipelines against

data errors [13], asking what-if the input data to a pipeline had cer-
tain errors like missing values or outliers? Before deploying an ML

pipeline in production, it is important to analyze how robust it is

against potential data quality problems. For example, in healthcare

an ML model might make predictions based on patient data and

notes from a doctor. What-if a doctor makes a lot of typos in a

stressful period? What-if patients enter their weight via a web-

form and mix up the separator symbol for decimals, resulting in a

sudden change of scale?

Interactivity. Our web-interface allows attendees to select which

columns to corrupt and how to corrupt them (e.g., with missing

values, categorical shifts, random scaling of numerical attributes,

and introducing broken characters to text columns). Additionally,

it allows attendees to specify different fractions of rows to corrupt

to test the level of robustness of the pipelines. Optionally, attendees

can introduce these corruptions not just to the test data, but also to

the train data, to see if encountering similar errors at training time

already helps the pipeline deal with particular errors better.

Analysis results. After running the what-if analysis, attendees are
presented with a report, which describes the type and magnitude

of the introduced data corruptions, as well as the corresponding

pipeline output scores on the test set. Optionally, mlwhatif also

reports the change to the output score if both the train and test set

were corrupted. Based on this report, attendees explore how robust

the respective pipeline is against different data errors at inference

Stefan Grafberger, Shubha Guha, Paul Groth, and Sebastian Schelter

time. These findings give them indications on ways to increase the

robustness of their pipeline, e.g., by augmenting the training data

with corrupted examples for a particular error type.

Optimization opportunities. Additionally, attendees can get a close

look under the hood of mlwhatif’s multi-query optimizer. As the

robustness analysis corrupts only the test side of a pipeline, our

optimizer reuses large portions of work between the variants, e.g.,

all operations on the train side, including featurization and model

training. For the test side, mlwhatif can push up the corruption

operations below the featurization, and optimize the repeated ap-

plication of expensive UDFs.

What-If Analysis 2: Impact of data cleaning operations. This
analysis allows attendees to test the impact of data cleaning oper-

ations [6–8], asking what-if the pipeline applied a particular error
detection and cleaning technique?Data quality problems like outliers

are easy to miss but can significantly impact the performance of an

ML model consuming the data.

There are many data cleaning techniques to choose from for par-

ticular error types. E.g., outliers can be detected with, e.g., standard

deviations, percentiles, or isolation forests. Potential outliers can

be imputed with methods like replacing them with the median, the

mean, or the most frequent value. Unfortunately, it is often unclear

in advance which data cleaning techniques are likely to help most.

Thus, practitioners often have to experiment with many different

methods [5]. mlwhatif automates this tedious and time consuming

repetitive process for existing pipelines.

Interactivity. The what-if analysis for this only requires attendees

to specify which data quality problem they expect in which parts

of the data. The analysis will automatically try a pre-defined list of

cleaning methods for each data quality problem, e.g., identifying

and cleaning label errors with cleanlab [8] or kNN-Shapley [6].

Analysis results. mlwhatif generates a report on how particular

cleaning methods affect the output scores of all variants of the

pipeline code. For each variant, the report details how a data quality

problem in a column was addressed, which cleaning method was

applied, and how this impacts the output score.

Optimization opportunities. Attendees can again explore how much

work is re-useable between different pipeline variants thanks to

our optimization rules. The data cleaning analysis always patches

both the train and test side of the pipeline, and requires a model

re-training per variant. Therefore, the optimizer focuses on pre-

processing optimizations here, such as projection push-up and filter

push-up optimizations.

What-If Analysis 3: Impact of preprocessing on fairness. The
third analysis allows attendees to measure the impact of preprocess-

ing operators on the output scores of a pipeline, e.g., fairness met-

rics [1], asking what-if the pipeline filtered or featurized the train-

ing data differently? Sometimes, even inconspicuous preprocessing

operations like removing rows with missing values via dropna in
pandas introduce technical bias in ML pipelines [3]. Biswas et al. [1]

proposed measuring the fairness impact of data transformers in

ML pipelines by removing them or replacing them with a refer-

ence operation. mlwhatif can apply such analyses automatically

to existing pipelines.

Interactivity. Attendees only need to specify which kind of prepro-

cessing operators they want to analyze; they can select both filters

and featurizers. Next, mlwhatif will generate a variant for each

preprocessing operator to analyze, where the operator is dropped or

replaced with a reference operation. The resulting pipeline scores

are then compared to the original pipeline scores, to measure the

impact of a particular preprocessing choice.

Analysis results. Attendees are presented with a report, describing

each measured operator, its reference operation (e.g., the removal of

the operator), and the resulting change in the pipeline output scores.

The report allows attendees to discover particular operations that

introduce technical bias, and to remove or change them accord-

ingly in the original pipeline. One such example for a potentially

problematic operation is the aforementioned dropna function.

Optimization opportunities. Repeatedly dropping or replacing pre-

processing operations such as filters presents interesting optimiza-

tion opportunities. Optimization rules like filter-removal push-up

help mlwhatif to optimize across multiple different variants, which

systematically remove or replace one operator at a time. Attendees

will again be able to follow step-by-step how our multi-query opti-

mizer leverages such optimization opportunities.

ACKNOWLEDGMENTS
This work was supported by Ahold Delhaize. All content repre-

sents the opinion of the authors, which is not necessarily shared or

endorsed by their respective employers and/or sponsors.

REFERENCES
[1] Sumon Biswas and Hridesh Rajan. 2021. Fair preprocessing: towards understand-

ing compositional fairness of data transformers in machine learning pipeline.

ESEC/FSE (2021).

[2] Stefan Grafberger, Paul Groth, and Sebastian Schelter. 2023. Automating and Op-

timizing Data-Centric What-If Analyses on Native Machine Learning Pipelines.

SIGMOD (2023).

[3] Stefan Grafberger, Paul Groth, Julia Stoyanovich, and Sebastian Schelter. 2022.

Data distribution debugging in machine learning pipelines. VLDBJ (2022).
[4] Stefan Grafberger, Shubha Guha, Julia Stoyanovich, and Sebastian Schelter. 2021.

MLINSPECT: A Data Distribution Debugger for Machine Learning Pipelines.

SIGMOD (2021).

[5] Shubha Guha, Falaah Arif Khan, Julia Stoyanovich, and Sebastian Schelter. 2023.

Automated Data Cleaning Can Hurt Fairness in Machine Learning-based Deci-

sion Making. ICDE (2023).

[6] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo

Li, Ce Zhang, Costas J Spanos, and Dawn Song. 2019. Efficient task-specific data

valuation for nearest neighbor algorithms. VLDB (2019).

[7] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2019. Cleanml:

A benchmark for joint data cleaning and machine learning. ICDE (2019).

[8] Curtis Northcutt, Lu Jiang, and Isaac Chuang. 2021. Confident learning: Estimat-

ing uncertainty in dataset labels. JAIR 70 (2021).

[9] Neoklis Polyzotis, Sudip Roy, Steven EuijongWhang, andMartin Zinkevich. 2018.

Data lifecycle challenges in production machine learning: a survey. SIGMOD
Record 47, 2 (2018).

[10] Sebastian Schelter, Felix Biessmann, Tim Januschowski, David Salinas, Stephan

Seufert, and Gyuri Szarvas. 2018. On challenges in machine learning model

management. IEEE Data Engineering Bulletin (2018).

[11] Sebastian Schelter, Stefan Grafberger, Shubha Guha, Bojan Karlaš, and Ce Zhang.

2023. Proactively Screening Machine Learning Pipelines with ArgusEyes. SIG-
MOD (2023).

[12] Sebastian Schelter, Stefan Grafberger, Shubha Guha, Olivier Sprangers, Bojan

Karlaš, and Ce Zhang. 2022. Screening Native ML Pipelines with “ArgusEyes”.

CIDR (2022).

[13] Sebastian Schelter, Tammo Rukat, and Felix Biessmann. 2021. JENGA - A Frame-

work to Study the Impact of Data Errors on the Predictions of Machine Learning

Models. EDBT (2021).

[14] Julia Stoyanovich, Bill Howe, Serge Abiteboul, H.V. Jagadish, and Sebastian

Schelter. 2022. Responsible Data Management. Commun. ACM (2022).

	Abstract
	1 Introduction
	2 System Overview
	3 Demonstration Details
	Acknowledgments
	References

