
Provenance Tracking for End-to-End Machine Learning Pipelines
Stefan Grafberger

s.grafberger@uva.nl

AIRLab, University of Amsterdam

Paul Groth

p.groth@uva.nl

University of Amsterdam

Sebastian Schelter

s.schelter@uva.nl

University of Amsterdam

ACM Reference Format:
Stefan Grafberger, Paul Groth, and Sebastian Schelter. 2023. Provenance

Tracking for End-to-End Machine Learning Pipelines. In Companion Pro-
ceedings of the ACM Web Conference 2023 (WWW ’23 Companion), April
30-May 4, 2023, Austin, TX, USA. ACM, New York, NY, USA, 1 page. https:

//doi.org/10.1145/3543873.3587557

Software systems that learn from data are being deployed in increas-

ing numbers in real-world application scenarios. It is a difficult and

tedious task to ensure at development time that the end-to-end ML

pipelines for such applications adhere to sound experimentation

practices, such as the strict isolation of train and test data. Further-

more, there is a need to enforce legal and ethical compliance in

automated decision-making with ML. For example, to determine

whether a model works equally well for different groups. To en-

force privacy rights (such as the ‘right to be forgotten’), we must

identify which models consumed the user’s data for model training

to retrain them without this data. Moreover, model predictions can

be corrupted due to undetected data distribution shift, e.g., when

the train/test data was incorrectly sampled or changed over time

(covariate shift) or when the distribution of the target label changed

(label shift). Data scientists also require support for pipeline debug-

ging and for uncovering erroneous data, e.g., to identify samples that

are not helpful for the classifier and potentially dirty or mislabeled

or to identify subsets of data for which a model does not work well.

Towards automated low-effort tooling for ML pipelines. Most

of the listed issues are typically addressed manually in an ad-hoc

way and require significant expertise and extra code. In many cases,

there is no system support for detecting particular issues. Typically,

data has to be integrated first, as common libraries assume the

input to be in a single table. Furthermore, specialised solutions are

often incompatible with popular libraries. Even simple tasks like

computing fairness metrics can be challenging. This situation is in

stark contrast to the software engineering world, with established

best practices and infrastructure for testing and CI.

Provenance is all you need. At the core of these issues is missing

provenance tracking in current tooling. For example, we find that

can automate the detection of many common correctness issues

in ML pipelines with access to (𝑖) the materialised artifacts of a

pipeline (its input relations, and its outputs, e.g., the feature matri-

ces, labels, and predictions of a classifier) as well as (𝑖𝑖) their why-
provenance [4] (e.g., which input records were used to compute a

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9419-2/23/04.

https://doi.org/10.1145/3543873.3587557

particular output). This allows us to design screening techniques

with low invasiveness for declaratively written ML pipelines.

ModelingML pipelines as dataflow computations. We base our

approach on a recently introduced model of treating ML pipelines

for classification tasks as dataflow computations [1–3]. This allows

us to reason about the operations and intermediate results in such

pipelines. We model a classification pipeline as a dataflow com-

putation from several input relations in a star schema to a set of

ML-specific matrices, e.g., for features, labels, and predictions. The

data integration stage of a classification pipeline combines the indi-

vidual input datasets into a single table by conducting a series of

joins. The subsequent data cleaning and filtering operations can

then be modeled with selections and (extended) projections to re-

move tuples and remove/recompute attributes. The final feature

encoding stage turns the data into matrix form, which we treat as

extended projections. Formally, all this can be modeled with SPJU.

Provenance Granularity. ML use-cases often require record-level

provenance tracking, e.g., using provenance polynomials [4]. For

example, applications dealing with user data need provenance that

allows for reasoning about data on a user level, e.g., to determine

which model was trained on which data and to track the user data

through end-to-end ML pipelines. It is often sufficient not to treat

feature encoding operations as aggregations, which typically intro-

duces significant performance overhead to provenance tracking.

Current State & Future Work. Based on these insights, we devel-

oped multiple prototypes. First, we developed machinery to extract

intermediate results and provenance (in the form of provenance

polynomials [4]) fromML pipelines withmlinspect [1]. It works for

declaratively written Python pipelines using popular libraries. We

see mlinspect as a runtime to enable more advanced use-cases. On

top of mlinspect, we developed ArgusEyes [2], which enables au-

tomatic detection of common issues w.r.t. best practices in ML, and

easily hooks into continuous integration workflows. Further, we

presented a prototype for Freamon [3], a more general approach to

reconstruct and query selected ML pipeline intermediates and their

provenance, that works with mlinspect, but also other provenance

tracking backends, e.g., for SparkML. Our code is open source and

we provide demo notebooks for mlinspect [5] and Freamon [7],

and a CI integration example for ArgusEyes [6].

Acknowledgements. This work was supported in part by Ahold Delhaize.

All content represents the opinion of the authors, which is not necessarily

shared or endorsed by their respective employers and/or sponsors.

REFERENCES
[1] Grafberger, et al. Data distribution debugging in ML pipelines. VLDBJ (2022).
[2] Schelter, et al. Screening Native ML Pipelines with “ArgusEyes”. CIDR (2022).

[3] Schelter. Reconstructing and Querying ML Pipeline Intermediates. CIDR (2023).

[4] Green, et al.. Provenance semirings. PODS (2007).
[5] https://github.com/stefan-grafberger/mlinspect

[6] https://github.com/amsterdata/arguseyes-demo

[7] https://github.com/amsterdata/freamon

https://orcid.org/0000-0002-9884-9517
https://orcid.org/0000-0003-0183-6910
https://doi.org/10.1145/3543873.3587557
https://doi.org/10.1145/3543873.3587557
https://doi.org/10.1145/3543873.3587557
https://github.com/stefan-grafberger/mlinspect
https://github.com/amsterdata/arguseyes-demo
https://github.com/amsterdata/freamon

	References

