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Abstract

Software systems that learn from data with Al and machine learning (ML) are becoming ubiquitous and
are increasingly used to automate impactful decisions. The risks arising from this widespread use of
AIl/ML are garnering attention from policy makers, scientists, and the media, and lead to the question
what data management research can contribute to reduce such risks. These dangers of AI/ML applications
are relatively new and recent, however our societies have had to deal with the dangers of complex and
distributed technical processes for a long time already. Based on this insight, we detail how the U.S. Food
and Drug Administration (FDA) combats the outbreaks of foodborne illnesses, and use their processes as
an inspiration for a data-centric vision towards responsible Al.
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Figure 1: Food processing is a complex process conducted by different parties in a geo-distributed setting.'
During this process, foods from different sources are joined, transformed from one form to another, and distributed
all over the world. At each of these steps, the output could perish and become poisonous, making the final
outcome unsafe to consume. What can we learn from the millennial pursuit of food safety? What type of technical
and regulatory frameworks exist such that we trust what we put on the table for our family everyday? And how
can we obtain the same level of trust for our data products?
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1 The Need for a Data-Centric Perspective on Responsible Al

Software systems that learn from data with Al and machine learning (ML) are becoming ubiquitous and are
increasingly used to automate impactful decisions. The risks arising from this widespread use are garnering
attention from policymakers, scientists, and the media, and lead to the question of what data management research
can contribute to reduce the dangers and malfunctions of data-driven AI/ML applications.

AI/ML malfunctions threaten vulnerable populations. In recent years, we have been regularly alarmed by
media reports about the harm potential of faulty AI/ML systems in devastating real-world incidents. Examples
include failures of automated decision-making systems, e.g., an eight-month pregnant woman in Detroit was
mistakenly arrested based on a faulty prediction from a facial recognition system, held in jail for several hours
and needed medical care upon her release [72]. Another example is that one of the largest health insurers in
the US allegedly applies a faulty AI model with a 90% error rate to deny critical health care services to elderly
patients [100]. The recent rise of generative Al produces new types of harm as well. A recent study of Al
detection tools, for example, found that these systems are biased against non-native English speakers [63] and
often falsely accuse international students of cheating. Furthermore, an Al supermarket meal planner recently
went rogue and suggested a recipe that would create chlorine gas [36].

Technical bias in ML applications. The reasons that data-driven systems are susceptible to producing unfair,
harmful outcomes are multi-faceted [35, 95, ], as we are ultimately dealing with socio-technological sys-
tems [1 1], which suffer from various types of bias [24]. In this work, we focus on technical bias, which arises
from the design decisions and operations in a technical system itself. Such bias is not well understood, especially
in the context of large end-to-end systems, which include data preparation and data cleaning stages, deployed
models and feedback loops. Recent research on technical bias identifies issues such as the lack of sufficient,
representative training data for certain demographic groups [6, 17, 57], biased training data with undesirable
stereotypes [12] or unintended side effects from automated data cleaning operations [38, 90, 97].

Existing and upcoming regulation. The dangers arising from data-driven AI/ML applications have been
recognised by regulators and lawmakers several years ago already, and led to the introduction of regulation all
over the world. The “General Data Protection Regulation” (GPDR) in Europe, for example, grants citizens the
right to find out what information an organisation has about them and to issue deletion requests for their data as
part of the “right-to-be-forgotten” [25, 26]. The upcoming European Al Act [20] will be the first comprehensive
regulation for the application of AI/ML in Europe. This act is expected to outlaw the usage of ML in selected
application areas and to strongly regulate its application in certain other areas. It defines different levels of risk in
Al usage scenarios and imposes a set of comprehensive technical requirements, such as “logging of activity to
ensure traceability of results”, “detailed documentation providing all information necessary on the system and its
purpose for authorities to assess its compliance”, and “appropriate human oversight measures to minimize risk”.
We note that outside Europe, similar regulations are being adopted [4, ].

The need for a data-centric perspective. Unfortunately, as evidenced by the media reports cited previously, we
currently lack the ability to efficiently implement technical measures to detect and mitigate the harms present in
AI/ML applications. This is confirmed by a recent survey study with industry practitioners [4 1], which outlines
several alarming shortcomings in addressing fairness and bias issues. The interviewed practitioners report that
academic research on de-biasing models falls short of addressing their concerns and often falsely “view[s] the
training data as fixed”, while they “consider data collection, rather than model development, as the most important
place to intervene”. At the same time, only “65% of survey respondents [...] reported that their teams have some
control over data collection and curation”, and the study also finds a high demand for future research to “support
[...] practitioners in [...] curating high-quality datasets”. Another example of the dire situation in the industry is a
recent court case against Facebook [101], where two veteran engineers of the company told the court that the
company does not keep track of the exact locations where personal data is stored and processed.

In the research community, several widely used training datasets for computer vision, such as LAION-5B [88]
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or TinyImages [102], have been taken offline after the discovery of highly problematic content in them [10, 11].
Moreover, it is unlikely, though, that all models that had been trained on these problematic datasets have been
retracted as well. For the current wave of closed, proprietary pretrained models available behind commercial
APIs, the situation is even worse, as we do not even have a way to determine what data they have been trained on.

Paper inspiration. In order to find inspiration for the outlined questions and challenges, we take a look into
safety measures outside of the computer science domain, as our societies have had to deal with the dangers of
complex and distributed technical processes for a long time already. In particular, we discuss how the U.S. Food
and Drug Administration (FDA) combats the outbreaks of foodborne illnesses (Section 2). We ask ourselves what
we can learn from the millennial pursuit of food safety. What type of technical and regulatory frameworks exist
such that we trust what we put on the table for our family every day? We use the FDA’s established processes as
an inspiration for a data-centric vision towards responsible Al in Section 3, with the goal to obtain the same level
of trust for our data products that we have for our food.

2  What Should We Do? Food Safety as Inspiration!

As an inspiration for the technical, data-centric vision outlined in this paper, we discuss how the US Food & Drug
Administration (FDA) combats the outbreaks of foodborne illnesses [107], and start with a concrete example.

2.1 Example — Outbreak of Salmonella Infections in the US in 2020

From June to September in 2020, a total of 1,127 people in 48 US states got infected with the outbreak strain of
Salmonella Newport [106]. The FDA and the Centers for Disease Control and Prevention (CDC) managed to
contain this outbreak and had the situation under control in October 2020, after which no more new infections
occurred. Combatting the outbreak proceeded as follows: Sick patients from the 48 states were seeking treatment
in hospitals and bacteria in their stool samples turned out to be closely related genetically, which implied a
common source of infection. Subsequent epidemiologic evidence showed that over 90% of them had eaten
onions (or food made with onions) in the week before their illness. As a consequence, the FDA started a
so-called “traceback investigation” which ultimately uncovered that red onions from the Thomson International
Inc. company were the source of the Salmonella outbreak. This triggered a country-wide recall of raw onions and
derived products like cheese dips, kebabs, and chicken salad sandwiches from a large number of grocery stores,
which ultimately ended the outbreak.

2.2 Disease Detectives, Traceback Investigations, and Food Supply Chains

The remarkable success of the FDA in combatting and controlling the salmonella outbreak naturally leads to the
question which processes and techniques they have applied to detect the outbreak, identify the suspect food and
determine the producer of the food, and what the computer science community can learn from these battle-tested
approaches.

Outbreak detection. The first question is how the FDA actually detects that there is an outbreak of a foodborne
disease. We illustrate the underlying process in Figure 2: Sick patients seek treatment in hospitals, from where
their doctors send stool samples to laboratories for analysis. The laboratories perform DNA fingerprinting on
the bacteria isolated from these samples via whole genome sequencing and the resulting DNA fingerprints are
subsequently collected via the PulseNet system [16]. PulseNet is a nationwide network of public health and food
regulatory agency laboratories coordinated by the CDC and manages a national central database with millions
of collected DNA profiles of bacteria. In this database, the sudden appearance of clusters of genetically related
bacteria implies a common source of infection and indicates an outbreak.
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Figure 2: Outbreak detection by monitoring a database of millions of DNA profiles of bacteria.

Identification of the suspect food. Once an outbreak is detected, the next task is to identify the contaminated
“suspect food” which infects people. As shown in Figure 3, the FDA employs so-called “disease detectives”, who
contact the sick patients and interview them to gather epidemiologic evidence related to questions such as “what
foods did people eat before they got sick?” or “what restaurants, grocery stores, or events did sick people go
to?”. For that, they leverage data provided by the patients, e.g., purchasing records collected on loyalty cards.
These activities typically lead to the identification of a particular suspect food, which is likely the root cause of
the outbreak.
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Figure 3: Disease detectives collect epidemiological evidence from sick patients to identify a contaminated
suspect food likely causing the outbreak.

Traceback investigation to determine the producer of the contaminated food. Once the responsible food is
known, the final task is to identify the actual point in the supply chain, where the food is likely being contaminated.
For that, the FDA starts a traceback investigation through the food supply chain, as illustrated in Figure 4. Here,
the supply chain for several contaminated end products is traced back retrospectively to identify a common point
in the supply chain which is likely the source of the contamination.

For that to be possible, entities involved in the food supply chain must have followed the FDA’s Food Trace-
ability Rule [105] and maintain traceability information for potentially dangerous food on the Food Traceability
List [104]. Such entities must maintain a Traceability Plan, with information about procedures used to maintain
traceability information and a point of contact for traceability questions [70]. The food traceability rule further de-
fines Critical Tracking Events (CTEs) in the supply chain, where detailed tracing data must be created, maintained
and forwarded by the participating entities. Examples of such events are the initial packing of a food, shipping it,
or transforming multiple ingredients into a new food. An individual unit of food is assigned a Traceability Lot
Code (TLC), typically during the initial packing event, which uniquely identifies it and is forwarded to receiving
entities. Furthermore, the food traceability rule defines certain categories of Key Data Elements (KDEs), which
must be created, maintained, and forwarded together with the TLCs of the food. Examples of the different
categories are Initial Packing KDEs, Shipping KDEs, Harvesting and Cooling KDEs and Receiving KDEs. The
actual data items per KDE depend on the category, e.g., for the packing KDEs, the date, quantity, harvest location,
name, and contact information of the harvesting company must be maintained, and the initial TLCs are typically
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Figure 4: Traceback investigation through the food supply chain, relying on Traceability Lot Codes (TLCs) to
identify units of food and provenance information in the form of Key Data Elements (KDEs) to reconstruct the
path a unit of food took through the chain.

assigned at the packing stage as well. Shipping KDEs need to include the corresponding TLCs, the shipping date,
and the locations for receiving and shipping. A special case are Transformation KDEs, which must be created at
points where a new food is produced from several ingredients. Here, the link to the ingredient TLCs must be
recorded, as well as a location description, the transformation date, and the quantities of the ingredients.

3 Towards Data Traceability for Responsible Al

In this paper, we develop a technical, data-centric vision to work towards a comparable level of safety in AI/ML
applications as the FDA has in combatting foodborne illnesses. Unfortunately, the current state of AI/ML safety
in the industry is dire, as practitioners from the aforementioned industry survey [4 1] report that “teams do not
discover serious fairness issues until they receive customer complaints about products” or read “negative media
coverage about their products”, and more than half of the respondents agreed that they “discovered serious issues
only after deploying a system in the real world”. While this survey paper identifies many crucial issues in this
space, it unfortunately falls short of outlining concrete technical directions for addressing them.

In the following, we outline our ideas for improving the safety of AI/ML applications. Inspired by the existing
methods and processes for combatting foodborne illnesses from Section 2, we propose ideas on “detecting
outbreaks” via prediction monitoring in Section 3.1, for conducting “traceback investigations” through data
supply chains in Section 3.2, and for identifying “contaminated data and pipeline steps” through audits in
Section 3.3.

3.1 Prediction Monitoring

As detailed in Section 2, the FDA monitors a database of DNA profiles of bacteria for geographic patterns to
detect outbreaks. This raises the question of whether large institutions or companies could use similar methods to
detect fairness issues with deployed models and ML pipelines early. In the following, we outline three directions
which we deem crucial for this endeavour.

Identifiable predictions. The “end product” of AI/ML applications are predictions on unseen data, which
are received by end-users or downstream applications in an organisation. Any detection of problems with the
application or its data, as well as any potential audit has to start from these predictions, similar to how disease
detectives need to determine the type of food that people consumed before they became sick. However, in current
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systems, predictions are often rather ephemeral. As a first step towards auditable AI/ML applications, their
predictions should come with unique identifiers, analogous to the TLC of food in food supply chains. Such
identifiers should be assigned in a way that allows for the retrospective identification of the state of the AI/ML
application (e.g., the software version and currently deployed model version, etc.) from which a prediction was
generated. Based on these identifiers, users and downstream consumers could raise concerns about a particular
prediction, and an investigating party (e.g., a dedicated responsible Al team in a large organisation) could start an
audit of the system.

State-of-the-art. In MLOps, the benefits of identifiable predictions are being recognised among industry practi-
tioners [73, 79]. However, current approaches require high expertise and custom implementations [79]. Even
rudimentary tasks such as tracking the corresponding code and model versions are challenging [109]. To fully
benefit from identifiable predictions, e.g., for rectifying erroneous predictions, it is essential to integrate prediction
identifiers with the associated metadata and provenance records encompassing ancillary pipeline stages such as
data preprocessing. However, the current implementation complexity leads us to believe that the adoption of these
techniques in practice is rather low.

Open questions and challenges. Enhancing and maintaining traceability and reproducibility in ML applications
requires that practitioners manually integrate, configure, and orchestrate various disparate systems [79, ]. The
resulting one-off solutions require further time- and cost-intensive development effort to enable monitoring and
output explanation. We argue that standardised interfaces would be essential to seamlessly integrate existing and
new ML operations techniques with identifiable predictions. We will also discuss further provenance-related
challenges for fine-grained data tracing in end-to-end ML pipelines in Section 3.2.

Detecting and collecting predictions with fairness issues. Even with identifiable predictions, an open question
is how to reliably detect fairness issues of an ML application at deployment time. Ideally, such issues should
already be caught by pre-deployment evaluations, but media reports and industry surveys show that this is rarely
the case. Furthermore, it would be crucial to have a “database” of common issues and examples of unfair /
unreliable predictions in production ML deployments, e.g., at a company-wide level. Given a comprehensive
catalog of such issues and an efficient way to monitor live predictions for fairness, we could build automatable
detection mechanisms similar to the outbreak detection techniques in PulseNet (Section 2).

State-of-the-art. A lot of recent work has focused on detecting changes in the overall distribution of the predictions
or changes between the training and serving data [71]. At serving time, systems like Tensorflow Serving [74] for
example employ so-called “canary models” to detect cases where the predictions differ between previous and
newly deployed models, and several techniques analyse the distribution of the predicted labels to detect changes
in the data [58, 87]. However, none of these techniques have a particular focus on determining fairness issues,
which may occur in small subsets of the data only.

Orthogonal to that, several techniques to debug prediction data offline have been developed, e.g., to detect
slices of the data where a model works less well [19, 80]. These approaches require simultaneous access to
the model, the featurised prediction data and additional demographic side data however, which makes their
application difficult in practice, especially for teams not owning the underlying AI/ML application.

Open questions and challenges. A major difficulty in monitoring a deployed system for fairness is that the
group membership information for individual predictions must be known to maintain corresponding fairness
metrics. Such group membership information (e.g., about the race or gender identity of the persons involved in
the predictions) is very sensitive and private information, to which a deployed serving system should ideally not
even have access. Furthermore, regulation like the EU Al Act enforces strict rules for which parts of an AI/ML
application such data can be used for at all. We envision that large organisation may want to create dedicated
infrastructure for such cases, where predictions with identifiers from different applications are collected, the
corresponding fairness metrics are maintained and SliceFinder-like algorithms [19] are run continuously to look
for subsets of the prediction data with potential issues.
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A large corpus of real-world predictions from ML systems with fairness issues would also greatly enhance
the ability of the academic community to work on these problems. However, it is difficult to collect such a corpus
of predictions and issues due to the inherent sensitive, privacy-critical nature of the data. There are some ongoing
efforts to (manually) create a comprehensive repository of “Al incidents” [65], yet the underlying technical details
and prediction data of the incidents are not available.

Monitoring generative models for representational harms. A large part of the existing fairness literature
focuses on so-called “allocative harms” in automated decision-making systems, which decide upon access to
certain resources such as job interviews, loans or medical prioritisation [41, 95]. It is difficult to choose an
appropriate fairness metric for such cases, as such a choice always implies a values-based decision and trade-
offs [69]. On the technical side however, computing these metrics is straightforward (given access to the required
data), as one essentially only has to maintain separate confusion matrices for the predictions for the groups of
interest [38]. With the rise of generative models however, we are being faced with so-called “representational
harms” [41], which occur for example when generative models reproduce sexist or racist stereotypes in the images
or text that they generate.

State-of-the-art. There is a large body of targeted studies in the NLP community, where researchers uncovered a
variety of biases and stereotypes in pretrained language models. Examples include sexist stereotypes and gender
bias [60, 94], anti-muslim bias [3], and undesirable biases towards mentions of disability [44]. It is however
unclear how to translate the detection capabilities of these customly designed studies into monitoring techniques
for deployed real-world systems. A first interesting step in this direction is the recently proposed Spade [92]
system, which learns assertions for safeguarding LLM outputs based on the version history of prompt edits.

Open questions and challenges. Due to the unpredictable nature of large generative models, generating adequate
assertions or “data unit tests” to check for bias in their output remains a complex challenge. Having too few
assertions potentially might make a system miss biased outputs, leading to unfair outcomes, while having too
many assertions could slow down the system and lead to many false alarms. We expect that future approaches will
generate data unit tests from predefined templates, based on manually defined assertion criteria. An orthogonal
approach are so-called “safety classifiers” [21, 62, ], where a secondary model is employed to assess the
outputs of a primary model for safety. Prior to the deployment phase, data will be collected where generative
models are intentionally probed to induce errors, which will then be used to train a classifier to detect biased
behavior.

3.2 Tracing Data Through End-to-End AI/ML Applications

Complex food supply chains span the globe and a single ingredient (like red onions in the example from Section 2)
may end up in multiple end products. This makes tracing such ingredients a complicated and expensive
undertaking. The FDA addresses this challenge with targeted tracing requirements which focus on only retaining
tracing data for high-risk ingredients on the food traceability list (Section 2). While tracking the provenance
of data in data processing systems is a decades-old research area [99], there is still little practical adoption of
these techniques in real-world systems, mainly due to the incurred performance overhead of comprehensively
tracking provenance through all kinds of queries, especially when they contain aggregations [5]. Similar to
the FDA'’s list of high-risk ingredients, the EU AI Act [20] defines high-risk Al application domains, such as
CV-sorting software for recruitment procedures, credit scoring denying citizens the opportunity to obtain a loan or
the verification of the authenticity of travel documents. In the following, we discuss ideas for efficiently applying
provenance tracking to the data pipelines in such scenarios.

Selective and focused provenance tracking. As already mentioned, tracking fully fine-grained semiring
provenance [5, 34] for every input row imposes a high performance overhead. In the food supply chain,
provenance tracking focuses on predefined “Critical Tracking Events”, which are the points in the supply chain
that are crucial later for audits. We need to adopt such a methodology as well for data pipelines, which would
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enable us to restrict the provenance tracking efforts to data exchange and transformation operations, which
actually impact the information required to audit an AI/ML application later. Furthermore, for each high-risk
Al application scenario, we could define the tracking granularity, the key transformations to focus on and the
information required per transformation event. The minimum granularity of the provenance should be tailored
for each use-case. For demographic data, provenance at the level of individuals might be sufficient, for facial
recognition applications, more fine-grained provenance at the level of individual images may be required, however.

State-of-the-art. In recent years, several techniques have been proposed to model ML pipeline operations and
to apply database-style provenance tracking for Python code, for example via runtime instrumentation as part
of mlinspect [30] or via static analysis as part of Vamsa [67]. These approaches have been extended in various
ways, e.g., for data debugging via Shapley values [49] or pipeline screening during continuous integration [83]. A
drawback of these methods is that they rely on heuristics and well-written, declarative code to be able to infer the
semantics of the pipeline operations, which leaves it unclear whether they can reliably be applied to low-quality
code as well. Another family of systems, which include Amazon’s ExperimentTracker [82] and mltrace [93], uses
a more robust approach for provenance tracking as they require manually annotated code. Unfortunately, this puts
a heavy burden on developers, who will, in our experience, often forego the additional effort of putting detailed
annotations on their code under time pressure. We expect that even coming up with high-level “traceability plans’
for large AI/ML applications will be challenging in practice, since these applications often orchestrate different
systems and libraries with workflow managers like Apache Airflow [1].

]

Open questions and challenges. In our eyes, the biggest challenge in this space is to find ways to reduce the
implementation-, annotation-, and runtime overhead for provenance tracking in ML pipelines, while guaranteeing
a high level of correctness and robustness. For industry applications, we can neither rely on trying to handle
arbitrary code nor on forcing developers to always manually annotate their code. An interesting middle ground
may be the use of pipeline templates, as pioneered by the mlflow recipes project [115], which forces developers
to modularise their code into pipeline steps with known semantics and predefined inputs and outputs, but still
gives them the freedom to write arbitrary code inside the steps. Unfortunately though, the real-world adoption of
these templating approaches is unclear at the moment. Nevertheless, such templates might be a natural point
to implement general robust provenance tracking. Analogous to the traceability plans required for food chain
tracking, we could define traceability templates for high-risk Al scenarios, with steps, provenance tracking, and
logging requirements specific to the particular use case.

To reduce the runtime overhead of provenance tracking, it may be worthwhile to take a deeper look at several
common aggregation operations in ML pipelines, like one-hot-encoding a particular column or normalising a
feature. While these operations technically conduct a global aggregation followed by a map transformation (in
dataflow terms), we may be able to ignore the aggregation part for tracking provenance, as we already know that
they do not remove rows and introduce an all-to-all provenance relationship onto the transformed feature values.
Similar techniques are already applied in DataScope [49] and ArgusEyes [83] to approximate ML pipelines as
queries in the positive relational algebra. A future challenge here is to define a restricted subset of operations for
ML pipelines, which still allows the implementation of a large class of ML applications, but drastically simplifies
provenance tracking.

Identifiable predictions, as discussed in Section 3.1, also present new challenges with respect to ML prove-
nance research. Existing experiment tracking tools like mlflow [115] already link predictions to high-level
artifacts such as models and source code. However, we think that record-level provenance is required to effec-
tively reconstruct the necessary data for a prediction. Given a prediction identifier, we would like to be able to
automatically retrieve all relevant inference inputs, data preprocessing steps, the model version employed for
inference, and, if necessary, all information about the training pipeline and its input data. While existing research
partially addresses provenance tracking and versioning in static pipelines with static input data, further challenges
remain for pipelines in dynamic production environments with continuously trained models [8] and evolving
retrieval corpora [14, 18, 39], where provenance has to be maintained incrementally.
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Another open question is the impact of data cleaning and integration operations on the fairness of AI/ML
applications. Several experimental studies indicate that data wrangling and integration operations such as missing
value imputation, outlier removal, or entity matching can sometimes negatively impact the fairness of models
trained on the resulting data [37, 53, 90, 97]. However, we currently lack a detailed understanding of this
impact, especially since the outcome seems to heavily depend on the chosen fairness metric and group definition.
Furthermore, determining such impact is hard in practice without access to the downstream models.

An orthogonal challenge in this area is the tension between detailed provenance tracking and the protection of
private user data. Provenance tracking requires storing information about the intermediate outputs of pipeline
operations and must additionally maintain sensitive metadata such as demographic group memberships of certain
records to be able to quantify the fairness impact of different operations. In many cases, such sensitive metadata
may not be accessible in inference systems at prediction time, for example, and measures must be taken to ensure
that these sensitive attributes are only used for testing models but not for training them [20]. To the best of our
knowledge, current ML platforms lack support for such use cases.

Provenance of data in pretrained and fine-tuned models. Academic “textbook” ML commonly assumes that
a single dataset is used to create a particular ML model, which implies that we would only need to track the
provenance of this source data through the corresponding ML pipeline. However, this assumption has never held
up for real-world deployments, which typically leverage a variety of data sources as input for a pipeline and often
apply ML already as part of the preprocessing of this data. Twitter’s recommender system for example aggregates
multiple input networks (representing likes, follows etc on the platform) into a common network dataset called
RealGraph [48], via a dedicated classifier that estimates the interaction probability between different users of the
network. Several recommendation algorithms consume this aggregated dataset instead of the raw input datasets
and the provenance of an interaction such as a like or follow is unclear after the transformation. This problem is
exacerbated nowadays due to the prevalence of large pretrained models, which are downloaded from repositories
such as HuggingFace and tailored to a particular ML use case via fine-tuning. In the majority of cases, the
connection to the underlying training data becomes unclear after fine-tuning, as the current infrastructure does
not keep track of the relationships between models. It would, for example, be difficult to identify all computer
vision models that originate from the recently retracted LAION dataset. The situation is even worse for non-open
source models created by commercial companies, where the underlying training data is not known for the base
model already.

State-of-the-art. Common methods to voluntarily document the origin of data and ML models are datasheets [27]
and model cards [66]. These are a form of manually created, semi-structured documentation, which is, for
example, in use at the popular model and data repository HuggingFace. Tensorflow ML Metadata [50] is a library
for recording and retrieving metadata associated with ML workflows. The Model Card Toolkit [23] supports
the creation of Model Cards and can also use metadata from ML Metadata to prepopulate information such as
class distributions and performance metrics. DAG Cards [98], inspired by model cards, have also been proposed
as a form of documentation, which can be automatically generated from ML pipeline code [9]. Experiment
tracking tools like mlflow [115] can log metadata as a starting point for creating documentation for ML models.
OpenML [108] is a popular platform for sharing datasets, ML tasks, workflows, and experimentation runs. While
it supports documentation like a dataset description for dataset uploads [75], it does not enforce their quality and
prioritises a frictionless user experience over documentation completeness. However, OpenML automatically
analyses uploaded datasets to compute additional data quality statistics. For ML pipelines, it relies on extensions
for popular libraries like scikit-learn that can automatically create a serialisable description [76]. Systems like
Macaroni [55] allow querying the existing metadata in open repositories, based on a unified representation [56].

Open questions and challenges. The main drawback of model cards and datasheets is that creating and maintaining
helpful documentation still mostly depends on the goodwill of the parties involved in the creation of the models
and the data. Most importantly, this documentation is not machine-readable in a way that would make it easy to
audit and/or verify the claims made about the provided models and data. As discussed, models are nowadays often
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downloaded and fine-tuned programmatically (e.g., via the popular transformers library from HuggingFace [43]).
Such packages and the underlying infrastructure pose a direct opportunity to automate provenance tracking
and to record the relationships between models. The semi-automated metadata collection tools can export
implementation details for reproducing experiments, however, they still put the burden to extract information
about the ML pipelines and models onto the users. Recently proposed approaches such as mlwhatif [29] might be
a starting point to automatically extract meaningful metadata, e.g., for nutritional labels in ranking [96, 1.

Another recent trend are parameter-efficient fine-tuning methods [42, 52, 54, 59], which do not create a full
model copy, but only learn a continuous prompt or an “adapter” to the model. In such cases, we would need to
track provenance on the level of these prompts and adapters (which might later even be further combined [89]). A
final challenge with tracking the provenance of data in generative models is that many large datasets commonly
used for these models (e.g., LAION [88] or gitschemas [22]) for generative models consist of links to resources
on the web, which are often crawled and filtered to build a custom dataset. This filtering process must also be
taken into account for provenance.

3.3 Identifying ‘“Contaminated” Data and Pipeline Steps Through Audits

It is still unclear how to efficiently and comprehensively audit AI/ML applications; see [13, 81] for a discussion
on the current state of this endeavor. Due to our data-centric perspective, we focus on issues and directions for
quantitative data audits only. As discussed in Section 2, traceback investigations in the food supply chain allow
disease detectives to audit these supply chains, identify the point of contamination, and ultimately remove the
source of contamination by issuing comprehensive recalls for all affected end products. How can we audit AI/ML
applications in a similar manner, based on the provenance information from Section 3.2? Ideally, we would like to
be able to quickly identify “contaminated” data and intermediate outputs, which, for example, contain unwanted
stereotypes or has been rendered unrepresentative due to biased filtering operations. Once such contaminated
data is identified, an audit would furthermore need to determine which models and predictions were affected and
need to be retracted and/or recomputed. Furthermore, such data-centric audits should be able to answer a larger
set of related questions about the robustness and regulatory compliance of an AI/ML application. Examples of
such questions are what data and features were used by the application and whether this usage was in line with
legal requirements (e.g., from the EU Al Act [20]), or whether the application follows the timely data deletion
requirements imposed by the right to be forgotten from GDPR [25]. Furthermore, audits should be able to assess
whether an application is robust enough against potential errors and changes in the data, and whether appropriate
measures have been taken to quantify and control the fairness of its predictions.

State-of-the-art. The validation of ML data in popular ML platforms such as Google TFX [7] or Amazon
SageMaker [71] relies on libraries such as Tensorflow Data Validation (TFDV) [15] and Deequ [85, 86], which
generate validation rules based on heuristics and data profiling. Related approaches are to “lint” ML data based
on well-known practical issues [45]. Follow-up work to these approaches [78, 91] applies a technique called
“partition summarisation” to learn to spot data with potential quality issues by applying anomaly detection based
on the statistics of previously observed data partitions.

There has been extensive research on cleaning datasets, e.g., [2, 46, 61, 68]. Furthermore, the data-centric
Al community started developing related techniques that jointly consider the ML model and data to address
inaccuracy, bias, and fragility in real-world ML applications and are tackling tasks such as training set selection
and data acquisition [64]. Many of the techniques in this space rely on data influence estimation techniques [40],
in particular on (an estimate of) the leave-one-out error or data Shapley value [28], which is either computed
via extensive retraining or influence functions [51]. Such techniques are the basis of several recently proposed
data debugging methods like Rain [111], Gopher [77] or DataScope [49]. A related line of work tackles ML
pipelines and employs light-weight provenance tracking and automatic instrumentation of Python code to assess
technical bias introduced by sudden distribution shifts [30, 32], data leakage and fairness issues [83, 84], as well
as robustness to erroneous input data [29, 31].
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Open questions and challenges. Unfortunately, neither TFDV nor Deequ have a particular focus on identifying
fairness and bias issues in the data, and require a relatively high user expertise and knowledge of the underlying
domain to adjust and filter the suggested validation rules. It would be crucial to find ways to guide users in
designing compliance- and fairness-related data unit tests with these libraries.

Furthermore, the existing methods for estimating the influence of training samples are extremely restricted in
terms of efficiency, scalability or applicability. In general, there exist two families of methods: Retraining-based
methods are applicable to any model class, but require extensive retraining of the ML model on a large number of
subsets of the data. Even retraining a model a few hundred times for a large dataset is infeasible in practice. The
second family are gradient-based methods, which require no retraining but are only applicable to certain model
classes due to assumptions of convexity [51] or linearity [ 14], and are still rather compute-heavy, as they often
require to compute a “Hessian vector product” for each combination of a training and validation sample [40].
Some exciting progress has been made in terms of scalability, e.g., on efficiently computing the Data Shapley
value [28] for kNN proxy models [47]. However, these techniques are only applicable to certain utility functions
but, for example, not to common ranking-based metrics in information retrieval.

The work from the data-centric Al community is promising. However, challenges such as ML pipelines with
complex data preprocessing operations are often overlooked, and automatically applying these techniques to ML
pipelines is still an open challenge [33]. The approaches for the holistic screening of ML training pipelines rely
on well-written code, which is often an unrealistic assumption in practice.

On the engineering side, we should strive to design a standardised API for provenance-based data auditing
and incident investigation, which could be integrated into popular projects such as Google TFX, mlflow recipes,
or SageMaker. Based on such an API, the academic and open source community could develop general auditing
software to greatly reduce the costs of such audits.

4 Conclusion

We took a detailed look at how the FDA detects outbreaks of foodborne illnesses via their PulseNet database,
discovers the contaminated food with disease detectives, and conducts traceback investigations through the food
supply chain to determine the root cause of the contamination and issue a comprehensive product recall (Section 2).
Inspired by the FDA’s processes, we developed a technical data-centric vision for responsible Al, which centers
around prediction monitoring, data tracing through end-to-end AI/ML applications, and identifying contaminated
data and pipeline steps through audits. For each of these aspects, we outlined technical research ideas, reviewed
related work, and discussed challenges and open questions.

We hope that our ideas can positively influence the development of safer AI/ML applications, especially in
the high-risk areas outlined by recent regulation such as the upcoming EU Al act.
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