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Abstract

Software systems that learn from data via machine learning (ML) are being deployed in increasing
numbers in real world application scenarios. These ML applications contain complex data preparation
pipelines, which take several raw inputs, integrate, filter and encode them to produce the input data
for model training. This is in stark contrast to academic studies and benchmarks, which typically
work with static, already prepared datasets. It is a difficult and tedious task to ensure at development
time that the data preparation pipelines for such ML applications adhere to sound experimentation
practices and compliance requirements. Identifying potential correctness issues currently requires a
high degree of discipline, knowledge, and time from data scientists, and they often only implement
one-off solutions, based on specialised frameworks that are incompatible with the rest of the data
science ecosystem.

We discuss how to model data preparation pipelines as dataflow computations from relational
inputs to matrix outputs, and propose techniques that use record-level provenance to automatically
screen these pipelines for many common correctness issues (e.g., data leakage between train and test
data). We design a prototypical system to screen such data preparation pipelines and furthermore
enable the automatic computation of important metadata such as group fairness metrics. We discuss
how to extract the semantics and the data provenance of common artifacts in supervised learning
tasks and evaluate our system on several example pipelines with real-world data.
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1 Introduction

Software systems that learn from data via machine
learning (ML) are being deployed in increas-
ing numbers in real world application scenarios.
The behavior of such ML applications very much
depends on their input data, and they are imple-
mented with systems and libraries from a rel-
atively young data science ecosystem, which is
rapidly evolving all the time. Experience shows

that it is difficult to ensure that such ML appli-
cations are implemented correctly [1, 2, 3, 4],
and as a consequence, data scientists building
these applications require fundamental system
support. These ML applications contain complex
data preparation pipelines, which take several raw
inputs, integrate, filter and encode them to pro-
duce the input data for model training. This is
in stark contrast to academic studies and bench-
marks, which typically work with static, already



prepared datasets. It is a difficult and tedious
task to ensure at development time that the
data preparation pipelines for such ML applica-
tions adhere to sound experimentation practices
and compliance requirements. Identifying poten-
tial correctness issues currently requires a high
degree of discipline, knowledge and time from data
scientists, and they often only implement one-off
solutions, based on specialised frameworks that
are incompatible with the rest of the data science
ecosystem.

Data preparation pipelines. Academic bench-
mark scenarios in ML often start with a static,
single-table input dataset. Real world ML appli-
cations on the contrary typically have to consume
data from many differents sources to produce a
single dataset for the subsequent ML model train-
ing. Figure 1 illustrates a common pattern for data
preparation workloads observed in many indus-
try scenarios [1, 2, 3]. The ML application con-
sumes several heterogeneous data sources (1) as
input (e.g., data originating from logfiles, database
tables, web crawls, etc.), and the first stage in
the data preparation pipeline is to integrate and
clean the data from these data sources (2). In most
cases, the data is represented in tabular form, e.g.,
with so-called dataframes, where individual cells
might additionally contain unstructured data such
as text or images. The integration and cleaning is
typically conducted via relational operations such
as joins and filters, often executed with a data
processing library like pandas [5] or a dataflow sys-
tem like Apache Spark [6]. The integration stage
produces a single tabular output which must be
encoded to matrix data to serve as training and
test data for the subsequent model training (3).
A common abstraction for conducting such fea-
ture encoding steps are so-called estimator/trans-
former pipelines, which have been popularised by
scikit-learn [7] and have also been adapted by
dataflow systems for ML like Spark’s MLIib [§]
or Google’s Tensorflow Extended (TFX) plat-
form [9]. The output of the feature encoding stage
is trainining data in matrix form, based on which
the typical ML model training and evaluation
process can begin.

Automation challenges in data preparation
pipelines. Many common tasks that arise dur-
ing the development and training of ML models
become more complex and tedious once we have to

solve them in light of a data preparation pipeline
(and not a static dataset like in many academic
scenarios). These include the wiolation of sound
experimentation practices, for example when data
scientists unintentionally violate the strict isola-
tion of train and test data. Moreover it is often
difficult to assess the group fairness [10, 4] of a
deployed model, which is difficult to conduct in
complex data preparation pipelines, as sensitive
attributes which identify groups may not directly
be used by the model. Furthermore, deployed ML
pipelines in the European Union must adhere to
the rights defined in the General Data Protection
Regulation (GDPR) in Europe, such as the ‘right
to be forgotten’ [11] and the obligation to keep
records of processing activities.

Towards automated low-effort screening of
data preparation pipelines. Most of these
issues are typically addressed manually in an ad-
hoc way, and require high expertise and a large
amount of additional code. In many cases there is
no system support for detecting particular issues,
and typically, data has to be integrated first,
as common libraries assume the input to be in
a single table. Furthermore, specialised solutions
are often incompatible with popular libraries in
the ecosystem. For example, ATF360 [12] requires
the implementation of custom dataset classes for
tracking group fairness, which in turn makes these
datasets incompatible with common abstractions
from scikit-learn, such as the ColumnTransformer
for feature transformations on data frames. This
situation is in stark contrast to the software
engineering world, which has established a com-
prehensive set of best practices and infrastructure
for testing and continuous integration.

Data provenance as foundation. We dis-
cuss how to model data preparation pipelines as
dataflow computations from relational inputs to
matrix outputs, and propose techniques to auto-
matically screen these pipelines for many common
correctness issues. We find that we can auto-
mate the detection of many such common issues
in ML pipelines with access to (i) the materi-
alised artifacts of a pipeline (its input relations,
and its outputs, e.g., the feature matrices, labels
and predictions of a classifier) as well as (i¢) their
why-provenance [13] (e.g., the information which
input records were used to compute a particu-
lar output). This allows us to design lightweight
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Fig. 1 High-level anatomy of a data preparation pipeline for a supervised learning task.

screening techniques with low invasiveness for
natively written data preparation pipelines, which
combine code from different libraries from the
rapidly evolving data science ecosystem.

Based on these insights, we present a pro-
totype, which operates on a natively written
ML pipeline in Python, extracts intermediate
results and provenance (in the form of provenance
polynomials [14]) with MLINSPECT [15, 16], and
infers the semantics of their artifacts based on
predefined “templates” (e.g., for a classification
task). We extend our initial ideas outlined in
a previously published single-page abstract [17]
and demonstration paper [18], and provide a
prototype, which enables the automatic detec-
tion of common issues w.r.t. best practices in
ML, and the computation of metadata such
as group fairness metrics, record usage by the
model, or data valuation with Shapley val-
ues. Our prototype handles supervised learning
pipelines natively written in pandas/sklearn and
keras, stores their artifacts and run data via
mlflow [19], and can be easily hooked into con-
tinuous integration workflows. It is available at
https://github.com/amsterdata/arguseyes.

Related work. Building better tooling for ML
pipelines is an active topic of research [20, 21, 22,
23, 24, 25, 26]. In contrast to other recent research
that needs to materialise provenance intermedi-
ates for every operator [27] or relies on automati-
cally rewriting and re-executing ML pipelines [28,
29], our system only needs to materialise a small
number of key artifacts during the execution of
the user’s original pipeline and implements all
functionality as queries on the materialised arti-
facts [30]. This makes our approach particularly
well-suited for integration in CI pipelines and
experiment tracking workflows.

In summary, the contributions of this paper are
the following:

® We discuss how to model data preparation
pipelines for supervised learning as dataflow
computations from relational inputs to matrix
outputs, and detail how to automate issue
screening and metadata computation based on
the captured artifacts and record-level data
provenance (Section 4).

® We implement a prototype to automatically
(7) screen for common issues like data leakage
between train and test set, covariate shift, label
shift or unnormalised features in data prepara-
tion pipelines, and (i7) compute metadata like
group fairness metrics of a classifier (Sections 4).

o We qualitatively evaluate the issue detec-
tion and metadata computation capabili-
ties of our system on a set of example
pipelines (Section 5.2).

2 Problem Statement

Supervised learning. In the standard scenario
for supervised learning, we have a feature space
X < RY and a label space Y with Y =
{1,2,...,C} for classification problems and Y =
R for regression problems. We are given a dataset
F of n labeled samples {(x;,yi) }ic[n], Where x; €
X and y; € Y, with the goal to learn a map
h : X — Y that generalises to unseen data,
based on the labeled dataset F (with the assump-
tion that all data points in F sampled i.i.d. from
unknown distribution p(X,Y’) where X and Y are
random variables). In practice, we learn a model
h = argming, 2 3% | L(h(x;),y:) by perform-
ing empirical risk minimisation on our dataset F
for a task-specific loss function L and hypothesis
space H. Note that we split the dataset F into
a disjunct training set (Xirain, Ytrain) for learn-
ing model parameters and a test set (Xiest, Ytest)
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for evaluating the generalisation performance of
the model on unseen data. Many common tech-
niques for experimental validation (e.g., testing
for dataset shift [31] or data debugging [32] are
designed to work on the matrix inputs Xiain,
Xtestu Ytrain; Ytest-

Incorporating data preparation steps. As
discussed in the introduction already, many ML
applications in real-world scenarios do not start
from a single source of input data F in matrix
form. Instead, there exists a data preparation
pipeline that has to compute the matrix data
(Xtrains Yerain) and (Xiest, Ytest) from several other
input datasets (e.g., log files, databases tables, files
in a data lake, ...) Dy,..., Dy via a data prepara-
tion pipeline, often in the form of structured/re-
lational data accompanied by unstructured data
such as text and images. We can think of the
data preparation pipeline as a map Dy, ..., Dy —
((Xtrairu ytrain)a (Xtest7 ytest)) from the raw iDPUtS
D1, ..., D to the desired matrix outputs. In our
experience, this map consists of three subsequent
high-level stages:

1. Integrating the individual datasets Dy, ..., Dy
into a single tabular dataset; this stage requires
the execution of relational joins to combine
data.

2. Cleaning and filtering the data to select a
subset which will form the train and test
data for the model; in its simplest form, this
stage requires relational selections and projec-
tions to remove tuples and remove or compute
attributes

3. Encoding the data into matrix form, this step
typically requires specialised feature encod-
ing operations that produce matrix outputs
(e.g., one-hot-encoding, feature hashing, bin-
ning, etc).

Furthermore, it is important to note that the input
datasets are not static in real-world applications,
but continously evolve, and both data prepara-
tion and model training have to be regularly
conducted.

Towards automation for correctness checks
and metadata computations in data prepa-
ration pipelines. As already discussed, there is
a common set of correctness checks and meta-
data computations that data scientists have to

conduct for their ML applications, such as ensur-
ing sound experimentation practices, assessing
the group fairness of the model, complying with
GDPR legislation and conducting data debug-
ging. These tasks are, at the moment, typically
manually executed by data scientists, have to be
reimplemented for each application, and require a
high amount of expertise, coding, and time. In this
paper, we tackle the following research questions
to work towards the automation of these tasks
in ML applications containing data preparation
pipelines:

® How should we model the input data and the
data preparation pipeline in order to reason
about them?

® How can we automate the outlined common
tasks for a wide variety of data preparation
pipelines for supervised learning tasks?

® How can we efficiently implement these tech-
niques for the existing data science ecosystem?

3 Example

Before we discuss our approach, we illustrate our
outlined problem on a concrete code example:

def load_data(target_categories, verified_only):
# Load individual input relations
reviews = pd.read_csv(’.../reviews.csv.gz’)
products = pd.read_csv(’.../products.csv’)
categories = pd.read_csv(’.../categories.csv’)
# Filter categories and join inputs
categories = categories[categories[’category’] \
.isin(target_categories)]
if verified_omnly: # Conditional filtering

reviews = \
reviews [reviews[’verified_purchase’] == ’Y’]
products = products.merge (categories,
on=’category_id’)
reviews = reviews.merge (products, on=’product_id’)
reviews[’all_text’] = \

reviews[’title’] + reviews[’review’].fillna(’’)
return reviews

# Manual train/test splits
def extract_train_data(reviews, split_date):
train_data = \
reviews [reviews[’review_date’] <= split_datel
train_labels = \
label_binarize (train_data[’helpful_votes’] > 0)
return train_data, train_labels

def extract_test_data(reviews, split_date):
test_data = \
reviews [reviews[’review_date’] > split_date]
test_labels = \
label_binarize(test_datal[’helpful_votes’] > 0)
return test_data, test_labels

# Generate a nested estimator/transformer pipeline
def feature_encoding(numerical, categorical, text):
one_hot = Pipeline ([
(SimpleImputer (strategy=’most_frequent’)),



(OneHotEncoder (handle_unknown=’ignore’))])

return ColumnTransformer (transformers=[

(’num’, FunctionTransformer (

lambda x: log(x)), numerical),
(’cat’, one_hot, categorical),
(’text’, HashingVectorizer(), text)])

# Define layout of neural network classifier
def neural_net():

nn = Sequential ([
Dense (256, activation=’relu’), Dropout(0.3),
Dense (64, activation=’relu’),
Dense (2, activation=’softmax’)])

return nn.compile(
loss=’sparse_categorical_crossentropy’)

# Main function to execute the pipeline

reviews = load_data(target_categories=[’Games’],
verified_only=False)

split_date = ’2015-07-31"

train_data, train_labels = \

extract_train_data(reviews,
test_data, test_labels = \
extract_test_data(reviews, split_date)
feature_transformation = feature_encoding(
numerical=[’star_rating’], text=’all_text’,
categorical=[’verified_purchase’, ’category_id’])
pipeline = Pipeline ([
(’features’, feature_transformation),
(’learner’, KerasClassifier (neural_net()))])
# Model training and evaluation
model = pipeline.fit(train_data, train_labels)
print (model.score(test_data, test_labels))

split_date)

This illustrative example pipeline trains a
classifier to identify helpful product reviews in
an e-commerce scenario, based on a database
of customer reviews consisting of three input
datasets. This pipeline applies relational opera-
tions on dataframes for preprocessing, and matrix
operations for feature encoding and model train-
ing. Furthermore, it has its code organised in
functions, contains control flow (a conditional
selection), applies a manually defined train/test
split based on a specified date, and encodes the
features a nested estimator/transformer pipeline.
Analogously to many ML applications in the real
world, our example combines different libraries.
The pipeline uses pandas for data preprocessing:
it reads several inputs files, filters and joins them,
and also derives a new attribute from the data in
the load_data function. Next, the data is encoded
into features via a declaratively specified nested
estimator/transformer pipeline from scikit-learn
in the feature_encoding function, which defines
the representation of categorical, numerical and
textual attributes of the data. The model to train
is a neural network whose layout is specified via
the keras API in the create_neural net function.

In real world application scenarios, we would
be eager to screen the pipeline for common viola-
tions of sound experimentation practices in ML,
and to compute additional meta information for
its data. In the following, we discuss such exam-
ple tasks and explain why they are difficult to
conduct.

Detecting violations of sound experimen-
tation practices. There is a common set of
concerns that have to be checked for every super-
vised learning scenario: Are train data and test
data correctly isolated from each other? Is there
covariate or label shift between the train set
and the test set? Are there constant features
that we could remove? Are the features appropri-
ately normalised? This is difficult for our example
pipeline, because the programmer cannot directly
access the feature matrices for the train and
test data. These matrices are internally built by
scikit-learn’s ColumnTransformer during the fit
and score calls of the nested estimator/trans-
former pipeline and never explicitly exposed to
the user program! In order to apply such checks
to the train and feature matrix, a data scien-
tist would have to rewrite the code such that the
feature encoders materialise the feature matrices,
and would have to subsequently invoke training
and inference manually. Furthermore, checking for
issues like data leakage between train and test
set is also complicated in our example, because
each training/test sample for the classifier com-
bines rows from our three input datasets (reviews,
products and categories), and the programmer
would have to manually reconstruct the relation-
ship between the rows of a feature matrix and the
input tuples of the input datasets.

GDPR compliance. For legal compliance, it
may be important to know the relationship
between the input tuples and the training data of
our model in the example. Recall that the pipeline
consumes three different input files, joins and fil-
ters them (which potentially removes tuples) and
only selects a subset of the tuples for training
the model. Assume that the reviews written by
a user contain personally identifiable data (e.g.,
about their gender identity). If the corresponding
user enforces their “right-to-be-forgotten” from
the GDPR and requests the deletion of their data,
the model would have to be retrained if the review



text of this particular user was part of the train-
ing set. Answering the question which part of the
raw input data was used to train a model is dif-
ficult in scenarios with complex data preparation
pipelines [33], as it again requires a data scientist
to manually reconstruct the relationship between
the rows of a feature matrix and the input tuples
of the input datasets.

Assessing group fairness. There are further
challenges when working towards the ethical and
legal compliance of ML applications [4]. For exam-
ple, we may want to investigate whether our clas-
sifier works reasonably well for different subsets of
the data, in order to avoid bias and discrimination.
It could be that the performance of the classifier
differs for data from different regions, as identi-
fied by the marketplace attribute in the data. In
order to investigate this, we would for example
need to compare the accuracy of the classifier for
test data from the US marketplace to its accuracy
on reviews from non-US marketplaces. This is dif-
ficult for two reasons: (7) it again requires access to
the feature matrix for the test data, which is only
implicitly formed by the estimator/transformer
pipeline during the score call, and (i7) it requires
us to identify the corresponding marketplace
value for each row of the feature matrix. This
value is not part of the feature matrix, as the
marketplace column is removed during feature
encoding by the ColumnTransformer. Solving this
issue again requires the data scientist to manually
reconstruct the relationship between the rows of a
feature matrix and the input tuples of the review
dataset, which contains the marketplace informa-
tion. Note that libraries like AIF360 [12] provide
specialised dataset abstractions that retain the
group membership information, however these
datasets classes are incompatible with the rest
of the data science ecosystem (e.g., certain con-
structs in scikit-learn pipelines).

4 Approach

Modeling data preparation pipelines as a
relational dataflow computation. We focus on
data preparation pipelines for classification tasks,
and look for a lightweight “template” for such
tasks, e.g., a minimal set of information that
enables us to automatically screen the code for

correctness violations and compute metadata such
as group fairness metrics.

Dataflow from relational inputs to matrix
outputs. We first define a way to reason about
the inputs and operations in data preparation
pipelines. Therefore, we model a classification
pipeline as a dataflow computation on k input
relations Dq,..., Dy in a star schema, which pro-
duces the following set of matrices: the training
feature matrix Xipain € R with the corre-
sponding training labels yipain € R”, and the test
feature matrix Xiesr € R™*¢ with the correspond-
ing test labels yiest € R™ and model predictions
Ypred € R™.

The assumption of relational inputs in a star
schema means that there is one relational input D,
(not necessarily specified explicitly) where each
tuple identifies the entities to classify with a pri-
mary key (e.g., this input corresponds to the
“fact table” in data warehousing scenarios). The
remaining k£ — 1 relational inputs contain addi-
tional side data for the entities, and D, has a
foreign key attribute referring to the primary key
of each side input (e.g., they correspond to the
“dimensional tables” in data warehousing). This
means that the data integration stage can combine
the individual datasets into a single table by con-
ducting a series of (left) joins between the entity
table D, and the side tables. The subsequent data
cleaning and filtering can then be conducted with
relational selections and (extended) projections to
remove tuples and remove/recompute attributes.
Formally, this means that the first two stages of
the data preparation pipeline only require opera-
tions from the positive relational algebra (SPJU;
selection, projection, join, union) [14]. The final
feature encoding stage turns the data into matrix
form with operations such as one-hot-encodings.
We can also model this stage with the posi-
tive relational algebra, if we treat the feature
encoders as extended projections that produce
vector outputs. Note that the idea of modeling ML
workloads with a mixture of relational and feature
encoding operations is becoming popular recently;
Microsoft’s Raven [34] system for example uses
a fine-grained intermediate representation such as
ONNX [35] to extend relational query processing
with ML inference.

Capturing data provenance. Next, we need a
principled way to capture the relationship between
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Fig. 2 High-level overview of provenance tracking and artifact capturing for a simplified version of our example pipeline.

the tuples of our relational inputs and the rows
of the matrix outputs. For that, we assume that
each tuple ¢; in an input relation D; is tagged
with a tuple identifier (4, j), and we compute the
why-provenance [13, 14] of the pipeline based on
the provenance semiring (P(I),U, U, ), ), where
I consists of the ids of the tuples in the input
datasets, P(I) denotes the powerset of I, and poly-
nomials are always combined via set union, e.g., in
the case of joins. Specifically, we compute a prove-
nance polynomial per row of each output matrix.
These polynomials can be retrieved via the func-
tion Lng(r), which maps the r-th row M][r] of an
output matrix M to its corresponding provenance
polynomial from P(I). In summary, the function
L allows us to identify the input tuples from
Dy, ..., Dy which contributed to the computation
of a particular training or test sample.

Figure 2 illustrates the discussed provenance
tracking and artifact capturing techniques for a
simplified version of our example pipeline.

Correctness checks and metadata computa-
tion as queries over materialised artifacts
and their data provenance. We detail how to
compute correctness checks and metadata based
on the outlined artifacts and their provenance.

Data leakage. The test data should be disjunct
from the training data to avoid information leak-
age. Given the pipeline outputs Xirain and Xyest,
we can test for this isolation condition by compar-
ing the provenance of the training feature matrix
Xirain With the provenance of the test feature

matrix Xiest, and state that they need to be com-
puted from disjunct sets of input tuples: 30 < p <
n,0<q<m:Lx,., (p) = LxXo (q)

GDPR compliance. For GDPR compliance, we
need to answer the question whether a given input
tuple has been part of the training data of an ML
model produced by a pipeline. If this tuple con-
tains personal information of a user and the user
asks for the deletion of their personal data (e.g.,
enforcing their “right-to-be-forgotten”), we may
have to retrain the model without this data [11].
We can determine whether a given tuple ¢; from a
relation D; was used as part of the training data
of the model by analysing the provenance of the
training feature matrix Xypain. If the tuple has
been used to train the model, then the provenance
polynomial of a row Xian[k] must contain its
tuple identifier: 30 < k < n: {(4,7)} C Lx,,.., (k).
Group fairness metrics. A crucial question for
ethical and legal compliance in many use cases
is whether the classifier produced by a pipeline
works reasonably well for different groups of per-
sons in the data. Answering this question requires
us to compute group fairness metrics [36]. Audi-
tors would define a protected group whose records
can be identified by a sensitive attribute A of rela-
tion D; having the value vyt (€.g., records with
gender=female). As basis for the metrics, we need
to compute the confusion matrix of the classifier
from its ground truth labels yios; and model pre-
dictions ypred With respect to the records from the
protected group (and analogously for the records
from the remainder of the data, the non-protected
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group). As previously mentioned, these confusion
matrices are difficult to compute for ML piplines,
as the sensitive attribute A might have been
projected out during preprocessing. We use the
provenance of each row from the model predic-
tions ypred[k] and labels yiesi[k] to identify its
corresponding tuple ¢; in the input relation D,
which allows us to test for its group member-
ship analysing the sensitive attribute t;[A]. We
can identify all label /prediction pairs required for
computing the confusion matrix for the protected
group as follows: {(¥iest[k]; Yprealk]) | 0 < k <
m Aty € DiAGIA] = vpror A 4(1,4)} € Ly, (k).
We analogously compute the confusion matrix for
the non-protected group by changing the predicate
for the sensitive attribute to ¢;[A] # vprot-

Distribution shift, constant features, etc. Many
other issues do not even require the provenance,
and can be detected by only examining the matrix
outputs of the pipeline, e.g., to detect constant
or unnormalised features, we identify the columns
of Xirain and Xiest which have constant values,
a non-zero mean or non-unit variance. In order
to detect covariate shift, we can train a “domain
classifier” [31] which tries to distinguish between
records Xypain and Xiegt; in order to detect label
shift between yirain and yiest, we can for exam-
ple apply the “label classifier” approach from [31],
which conducts a two-sample x? test between
their empirical label distributions. Note that our
approach is general and allows us to apply all
kinds of shift detection techniques to the pipeline
that only require access to Xirain, Xtest Yirain and

Ytest-

Implementation. We extract the artifacts
and provenance with our recently published
library MLINSPECT [37, 16] which can instru-
ment ML pipelines written natively in Python
with dataframe operations from pandas and fea-
ture transformation operations from scikit-learn.
Based on these artifacts, our system fills a “tem-
plate” for an ML task, e.g. a classification task,
and stores the artifacts together with run informa-
tion in the experiment tracking system miflow [19].
We implement a variety of so-called “issue detec-
tors” and “metadata” computations that leverage
the pipeline template (together with the cor-
responding artifacts and provenance) to screen
the pipeline for correctness issues or to compute
metadata like group fairness metrics.

5 Evaluation

We implement three complex example pipelines
for classification and regression problems on pub-
lic datasets to demonstrate how our system can be
applied in real world use cases. Section 5 gives an
overview of these pipelines and denotes the task
type (type) of the pipeline, the way in which train
and test data are generated (split), the number
of input datasets (#inputs), and whether they
contain control flow (cflow), missing values in the
data (missing). Furthermore, we list the number
of filter (#filters) and join operations (#joins)
applied. These pipelines use simple off-the-shelf
models, as our focus is on handling complex data
preparation and encoding operations, and not on
the actual learning tasks.

5.1 Experimental Setup

To the best of our knowledge, there exists no other
system or benchmark to screen data preparation
pipelines for ML applications at this point. This
lack of a baseline makes it difficult to quantita-
tively evaluate our work (e.g., by counting the
number of correctly identified issues compared to a
potential baseline). We see the main benefit of our
approach in its ability to automatically apply tech-
niques to pipelines without code modifications. As
a consequence, we decide to qualitatively evalu-
ate our approach based on the introduced complex
example pipelines as follows: we artificially intro-
duce correctness issues into our pipelines (or ask
for metadata to be computed), detail how this



Name type split #inputs control flow? missing? filters? #joins
Reviews classification  temporal 4 yes yes 4 2
Ratings regression temporal 4 yes yes 4 2
Credit classification  predefined 1 yes yes dyn. -

Table 1 Overview of our example pipelines for experimentation. We denote the task type of the pipeline (type), the way
in which train and test data are generated (split), the number of input datasets (#inputs), and whether they contain
control flow (cflow) or missing values in the data (missing). Furthermore, we list the number of filter (#filters) and join

operations (#joins) applied.

can be achieved automatically by our system,
and discuss afterwards how that could have been
achieved manually, and what effort this would
have required.

We evaluate unsound experimentation issues
on the Reviews and Ratings pipelines and inves-
tigate automatic group fairness metrics compu-
tation and data usage tracking for GDPR on
the Credit pipeline. We showcase that our sys-
tem successfully detects the issues and computes
the required metadata without requiring code
changes. For comparison, we discuss the difficul-
ties in manually rewriting the pipeline to detect a
given issue or compute the required metadata.

Please note that our provenance tracking uses
the existing library mlinspect [16, 37], thus,
we inherit its provenance tracking performance,
which has been evaluated in previous publica-
tions [21, 16].

5.2 Qualitative Evaluation of the
Screening Tasks

Detecting data leakage between train and
test set. In our first experiment, we showcase how
our system can detect data leakage between train
and test data. This is a serious issue, as we might
get a wrong estimate of the generalisation capabil-
ities of a model if its evaluation data accidentally
contains already seen training examples. In prac-
tice such data leakage often happens as a result
of programming errors in data preparation code
or when the experimentation data is prepared by
non-ML experts (e.g., business teams).

Simulating data leakage as a result of an erro-
neous temporal data split. We create a faulty
version of the Reviews pipeline. The correct ver-
sion of the pipeline conducts a temporal split of
the data to generate the train set via the predicate
review_date <= split_date and the test set via

review_date > split_date. We simulate a pro-
gramming error by changing the test set predicate
to review_date >= split_date, which leads to
the accidental inclusion of training data from the
day specified by split_date in the test set.

Automatic detection. We configure our system to
run the faulty version of the pipeline and look for
data leakage via a declarative config file. Our sys-
tem automatically detects the data leakage issue
from the provenance for the train and test feature
matrices, and reports that there are 81 overlap-
ping records between the train and test data,
which are exactly the records belonging to the
day 2015-07-31 specified in the split_date vari-
able. As discussed in Section 4, we determine the
overlap solely by examining the provenance poly-
nomials of the captured train and test feature
matrices.

Effort and difficulty for manual detection. In con-
trast to other issues, the data leakage detection
would require relatively little code to imple-
ment for our example pipeline. A data scientist
would have to write code to intersect the pan-
das dataframes for the train and test data at
the correct location in the pipeline (e.g., before
the feature encoding) and would have to manu-
ally look for duplicate columns. Computing the
intersection of the columns on the raw data can
become very expensive though as it requires an
inner join between the datasets with all existing
columns as join keys. Our approach of intersecting
the data provenance (sets of integers) of the train
and test matrices can be implemented much more
efficiently.

Group fairness assessment. As already dis-
cussed earlier, a major challenge in production
ML is to enforce legal and ethical compliance. In
order to determine whether a model works rea-
sonably well for different groups [10], one needs to
compute group fairness metrics for different sub-
sets of the data. This is difficult to conduct in



data preparation pipelines, as sensitive attributes
which identify groups may not directly be used
by the model (or may even be illegal to use).
We investigate this task using the Credit pipeline,
where we intend to compute group fairness metrics
based on the demographic features sex and race,
which are not used by the model and projected
out during data preparation.

Automatic computation. We declaratively config-
ure ARGUSEYES to compute the confusion matri-
ces and group fairness metrics for groups defined
by the race attribute (white compared to non-
white), and sex attribute (male compared top
non-male) from the data. ARGUSEYES computes
these metrics and logs them to mlflow. It deter-
mines that there is a vast difference in the classi-
fier’s false negative rate (FNR) (falsely predicting
a person with a high income to have a low income
level) for the groups in both cases, violating the
fairness notion of equal opportunity [36]. The FNR
for persons with the value sex=male is 59.7%,
compared to 66.5% for the rest; the FNR for
persons with the attribute race=white is 60.1%,
while 66.9% for non-white persons.

Effort and difficulty for manual detection. Manu-
ally implementing the fairness metrics calculation
for our pipeline is very tedious for several reasons:
(i) we need access to the predictions ypred, which
are not explicitly exposed, as we only call the
score function; (i) we need to map the predic-
tions back to the input recods, which have differ-
ent dimensions, as our pipeline filters out records
by workclass during data preparation; (iii) we
need to know the group membership and ground
truth label per prediction, which unfortunately
rely on sensitive attributes that are removed from
the data before feature encoding. A data scien-
tist would either have to completely rewrite the
pipelines, e.g., by adding identifiers to records and
maintaining a custom mapping of group member-
ships or would have to switch the code to using a
dedicated fairness library like ATF360 [38], whose
dataset implementation is unfortunately incom-
patible with many other popular components from
data science libraries such as scikit-learn’s estima-
tor/transformer pipelines.
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Data usage tracking for GDPR compli-
ance. A related compliance task originating
from GDPR that we already discussed is the
the obligation to keep records of processing
activities (https://gdpr-info.eu/art-30-gdpr/) to
enforce data deletion rights such as the ‘right to
be forgotten’ (https://gdpr-info.eu/art-17-gdpr/).
For that, we need to know which personal data was
used to train a particular model, as the law might
require us to retrain the model if a user requests
their data to be deleted. In our Credit pipeline,
not all data is used for model, as some records are
filtered out initially, based on a dynamic filter on
the workclass attribute.

Automatic computation. We configure our system
to track input record usage in the Credit pipeline,
and configure our dynamic filter to remove pub-
lic employees (with a workclass attribute value
of "Federal-gov’ or ’State-gov’) from the data. Our
system captures the input data, and computes an
additional attribute based on provenance, which
indicates where a particular record was part of
the final training data or not. We retrieve the
serialised data from mlflow and verify that our sys-
tem correctly identified that the 960 ’Federal-gov
> and 1,298 ’State-gov’ employees are marked as
non-participating.

Effort and difficulty for manual detection. Track-
ing the record usage is again tedious to manually
implement. One would have to generate artifi-
cial identifiers for the input records, and manually
extract and store the identifiers of the remaining
records at the correct location (e.g., before feature
encoding).

6 Conclusion

We discussed how to model data preparation
pipelines as dataflow computations from relational
inputs to matrix outputs, and detailed how to
to automatically screen these pipelines for many
common correctness issues. We designed a pro-
totypical system to screen such data prepara-
tion pipelines and furthermore compute important
metadata such as group fairness metrics. Further-
more, we qualitatively evaluated our system on a
set of complex example pipelines with real-world
data.
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